- TI nspire
[TI-nspire] 푸리에 급수, 내장함수 & 그래프로 확인하기 - 예제 #1
문제
함수 정의
\[
f(x) =
\begin{cases}
x + 1, & -1 < x < 0 \\
1 - x, & 0 \leq x < 1
\end{cases}
\]
이 함수 \( f(x) \)는 \(-1 < x < 1\)에서 정의되어 있으며, 주기 \( T = 2 \)를 가지도록 주기적으로 확장된다고 가정합니다. 즉, \( f(x + 2) = f(x) \)입니다.
목표
1. 함수 \( f(x) \)의 푸리에 급수를 계산하세요.
2. 푸리에 급수의 일반항을 구하고, 그 결과를 적어도 첫 몇 개의 항으로 나타내세요.
풀이 힌트
1. 주기 \( T = 2 \) 이므로, 기본 각주기는 \( \omega_0 = \frac{2\pi}{T} = \pi \) 입니다.
2. 함수 \( f(x) \)는 구간 \(-1 < x < 1\) 에서 정의되어 있으므로, 이 구간에서 푸리에 급수의 계수를 \( a_n \), \( b_n \) 계산해야 합니다.
푸리에 급수의 일반적인 표현은 다음과 같습니다:
\[
f(x) = a_0 + \sum_{n=1}^{\infty} \left( a_n \cos(n \pi x) + b_n \sin(n \pi x) \right)
\]
여기서:
- \( a_0 \)는 상수항,
- \( a_n \)과 \( b_n \)은 각각 코사인 및 사인 항의 계수로, 다음과 같이 정의됩니다:
\[
a_0 = \frac{1}{T} \int_{-1}^{1} f(x) \, dx
\]
\[
a_n = \frac{2}{T} \int_{-1}^{1} f(x) \cos(n \pi x) \, dx
\]
\[
b_n = \frac{2}{T} \int_{-1}^{1} f(x) \sin(n \pi x) \, dx
\]
각각의 계수를 구한 후, 푸리에 급수를 완성해 보세요.

댓글8
-
세상의모든계산기
1. 함수의 정의 / 정적분 확인

ㄴ
Sin 적분 경고 Warning : Domain of the result might be larger than the domain of the input.※ 이 문제에서 사용된 조각함수(Piecewise Continuous Function)는 단독으로는 적분도 되고, 미분도 되지만,
다른 함수와 결합되면(cos 함수와 곱해짐) 아쉽게도 Nspire 에서 직접 정적분되지 않습니다.
혹 정적분되더라도 approx(근사값)으로만 표시되며, 게다가 재수없으면 오류가 발생하는 경우도 있습니다.따라서 어쩔 수 없이 구간을 두 부분으로 나누어 계산하고 합쳐야 합니다.
ㄴ https://allcalc.org/52386 : [PDF] Convolution Integrals with Nspire CAS※ n 이 아니라 @n1 을 사용한 이유 : https://allcalc.org/5077 -
세상의모든계산기
2. 상수항(a₀) / 계수(an, bn) - 일반항 정의

- 1
-
-
1
세상의모든계산기
3.1 그래프 수식 입력 대안
seq() 함수로 list 를 생성하는 중간과정 없이, @n1 을 그대로 이용할 수도 있음.

- 1
-
-
세상의모든계산기
5. 라이브러리 kit_ets_mb\fourier() 사용시

라이브러리 : https://allcalc.org/52395




세상의모든계산기 님의 최근 댓글
오류 발생 https://www.youtube.com/watch?v=dcg0x5SjETY 위 영상의 문제의 함수를 직접 구해 보았습니다. 그래프로는 잘 확인이 되는데... fmin(), fmax() 함수로 직접 구해보니, 결과가 기대한 것과 다르네요. 구간을 넣지 않으니 fmim, fmax 둘 다에서 오류인 결과를 내놓습니다. 구간을 넣더라도, 적절하게 넣지 않으면, 답이 잘 안나오는 걸 확인할 수 있습니다. fmin 은 그나마 x=0을 기준으로 나누지 않더라도 답이 나오는 편이지만, fmax 는 -10~10 을 구간으로 넣을 때, 가운데 x=0 근방에서 그래프가 위로 솟아오르는 구간은 함수값을 확인하지 않는 듯 합니다. ㄴ fmax가 더 열등해서 그런 것은 아니고, 뒤집어진 모양에서는 반대로 fmin이 못찾습니다. 구간 범위가 커질 경우, 함수에 적용하여 계산하다가 숫자 허용 한계를 벗어나서 overflow 가 나서 오류가 발생할 수도 있는 듯 합니다. 뒤에 점을 넣으니 경고 문구가 추가로 나오긴 했는데, ⚠️ Questionable accuracy. When applicable, try using graphical methods to verify the results. 그래도 실망이네요. * 믿음직한 녀석은 아닌 듯 하니, 주의 표시 ⚠️가 나오든 안나오든, 사용에 주의하시기 바랍니다. 가급적이면 그래프로 검증해 보시는게 좋겠습니다. 2025 10.26 예시 8-1 : 분수식 solve시 오류 예시, 분모에 들어간 X³을 X로 치환해 해결? https://allcalc.org/56074 2025 10.25 fx-570 CW 는 아래 링크에서 https://allcalc.org/56026 2025 10.24 불러오기 할 때 변수값을 먼저 확인하고 싶을 때는 VARIABLE 버튼 【⇄[x]】목록에서 확인하고 Recall 하시면 되고, 변수값을 이미 알고 있을 때는 바로 【⬆️SHIFT】【4】로 (A)를 바로 입력할 수 있습니다. 2025 10.24 fx-570 CW 로 계산하면? - 최종 확인된 결과 값 = 73.049507058478629343538 (23-digits) - 오차 = 6.632809104889414877 × 10^-19 꽤 정밀하게 나온건 맞는데, 시뮬레이션상의 22-digits 와 오차 수준이 비슷함. 왜 그런지는 모르겠음. - 계산기중 정밀도가 높은 편인 HP Prime CAS모드와 비교해도 월등한 정밀도 값을 가짐. 2025 10.24