- TI nspire
fmax =함수의 최대값일 때의 x값, fmin =함수의 최소값일 때의 x값
1. fmax() 함수
fMax(Expr, Var) ⇒ Boolean expression
fMax(Expr, Var,lowBound)
fMax(Expr, Var,lowBound,upBound)
fMax(Expr, Var) | lowBound≤Var≤upBound
Returns a Boolean expression specifying candidate values of Var that maximize Expr or locate its least upper bound.
Expr을 최대화하는 Var의 후보 값, 또는 최대값이 없을 경우 최소 상한이 되는 Var의 후보 값을 정의하는 부울리언 표현식을 반환합니다.


제약 연산자("|")를 사용하여 해의 구간을 제한하거나 다른 제약 조건을 지정할 수 있습니다.
'자동(Auto)' 또는 '근사(Approximate)' 모드에서 '근사(Approximate)'로 설정한 경우, fMax() 함수는 반복적인 계산을 통해 하나의 근사적인 극댓값(approximate local maximum)을 찾습니다.
특히, "|" 연산자로 검색 구간을 하나의 극댓값만 포함하는 작은 범위로 제한하면 계산 속도가 더 빨라집니다.
2. fmin() 함수
fMin(Expr, Var) ⇒ Boolean expression
fMin(Expr, Var,lowBound)
fMin(Expr, Var,lowBound,upBound)
fMin(Expr, Var) | lowBound≤Var≤upBound
Expr을 최소로 만드는 Var 값의 조건을 불리언 표현식으로 반환합니다. 만약 최소값이 존재하지 않는다면, 최대 하한(greatest lower bound)을 찾는 조건을 반환합니다.

제약 연산자("|")를 사용하여 해의 구간을 제한하거나 다른 제약 조건을 지정할 수 있습니다.
'자동(Auto)' 또는 '근사(Approximate)' 모드에서 '근사(Approximate)'로 설정한 경우, fMin() 함수는 반복적인 계산을 통해 하나의 근사적인 극솟값(approximate local minimum)을 찾습니다.
특히, "|" 연산자로 검색 구간을 하나의 극솟값만 포함하는 작은 범위로 제한하면 계산 속도가 더 빨라집니다.
3. 주의
위 두 함수는 최대(최소상한), 최소(최대하한) 이 되는 함수값 f(x) 를 찾아서 보여주는 함수가 아닙니다.
그 때의 x 값을 구하는 함수입니다.
함수값 f(x) 를 구하는 함수는 없으니, 찾아진 부울리언 표현식 f(x)에 제약연산자로 넣어서 계산하시면 됩니다.

- 계산기의 한계 :
fMin/fMax 기능은 댓글의 예제와 같이 복잡한 함수에 대해 넓은 구간 또는 무한 구간을 탐색할 때 수치적으로 불안정하거나 잘못된 결과를 내놓는 한계를 가지고 있습니다.
- 문제의 해결 :
그래프 기능으로 함수의 개형을 미리 확인하고, 검색 구간을 좁혀서 계산기를 '가이드' 하는 것이 바람직해 보입니다.
아니면 미분&solve 기능을 이용해 극값을 갖는 x값을 미리 확인하고, 그 값을 구간의 기준으로 나누어 검색해 보는 것도 방법이 될 수 있을 듯 합니다.
댓글1
-
세상의모든계산기
오류 발생
https://www.youtube.com/watch?v=dcg0x5SjETY
위 영상의 문제의 함수를 직접 구해 보았습니다.
그래프로는 잘 확인이 되는데...


fmin(), fmax() 함수로 직접 구해보니, 결과가 기대한 것과 다르네요.

구간을 넣지 않으니 fmim, fmax 둘 다에서 오류인 결과를 내놓습니다.
구간을 넣더라도, 적절하게 넣지 않으면, 답이 잘 안나오는 걸 확인할 수 있습니다.
fmin 은 그나마 x=0을 기준으로 나누지 않더라도 답이 나오는 편이지만,
fmax 는 -10~10 을 구간으로 넣을 때, 가운데 x=0 근방에서 그래프가 위로 솟아오르는 구간은 함수값을 확인하지 않는 듯 합니다.
ㄴ fmax가 더 열등해서 그런 것은 아니고, 뒤집어진 모양에서는 반대로 fmin이 못찾습니다.

구간 범위가 커질 경우, 함수에 적용하여 계산하다가 숫자 허용 한계를 벗어나서 overflow 가 나서 오류가 발생할 수도 있는 듯 합니다.
뒤에 점을 넣으니 경고 문구가 추가로 나오긴 했는데,
⚠️ Questionable accuracy. When applicable, try using graphical methods to verify the results.

그래도 실망이네요.
* 믿음직한 녀석은 아닌 듯 하니, 주의 표시 ⚠️가 나오든 안나오든, 사용에 주의하시기 바랍니다.
가급적이면 그래프로 검증해 보시는게 좋겠습니다.
세상의모든계산기 님의 최근 댓글
오류 발생 https://www.youtube.com/watch?v=dcg0x5SjETY 위 영상의 문제의 함수를 직접 구해 보았습니다. 그래프로는 잘 확인이 되는데... fmin(), fmax() 함수로 직접 구해보니, 결과가 기대한 것과 다르네요. 구간을 넣지 않으니 fmim, fmax 둘 다에서 오류인 결과를 내놓습니다. 구간을 넣더라도, 적절하게 넣지 않으면, 답이 잘 안나오는 걸 확인할 수 있습니다. fmin 은 그나마 x=0을 기준으로 나누지 않더라도 답이 나오는 편이지만, fmax 는 -10~10 을 구간으로 넣을 때, 가운데 x=0 근방에서 그래프가 위로 솟아오르는 구간은 함수값을 확인하지 않는 듯 합니다. ㄴ fmax가 더 열등해서 그런 것은 아니고, 뒤집어진 모양에서는 반대로 fmin이 못찾습니다. 구간 범위가 커질 경우, 함수에 적용하여 계산하다가 숫자 허용 한계를 벗어나서 overflow 가 나서 오류가 발생할 수도 있는 듯 합니다. 뒤에 점을 넣으니 경고 문구가 추가로 나오긴 했는데, ⚠️ Questionable accuracy. When applicable, try using graphical methods to verify the results. 그래도 실망이네요. * 믿음직한 녀석은 아닌 듯 하니, 주의 표시 ⚠️가 나오든 안나오든, 사용에 주의하시기 바랍니다. 가급적이면 그래프로 검증해 보시는게 좋겠습니다. 2025 10.26 예시 8-1 : 분수식 solve시 오류 예시, 분모에 들어간 X³을 X로 치환해 해결? https://allcalc.org/56074 2025 10.25 fx-570 CW 는 아래 링크에서 https://allcalc.org/56026 2025 10.24 불러오기 할 때 변수값을 먼저 확인하고 싶을 때는 VARIABLE 버튼 【⇄[x]】목록에서 확인하고 Recall 하시면 되고, 변수값을 이미 알고 있을 때는 바로 【⬆️SHIFT】【4】로 (A)를 바로 입력할 수 있습니다. 2025 10.24 fx-570 CW 로 계산하면? - 최종 확인된 결과 값 = 73.049507058478629343538 (23-digits) - 오차 = 6.632809104889414877 × 10^-19 꽤 정밀하게 나온건 맞는데, 시뮬레이션상의 22-digits 와 오차 수준이 비슷함. 왜 그런지는 모르겠음. - 계산기중 정밀도가 높은 편인 HP Prime CAS모드와 비교해도 월등한 정밀도 값을 가짐. 2025 10.24