- TI nspire
[TI-nspire] 푸리에 급수, 내장함수 & 그래프로 확인하기 - 예제 #1
문제
함수 정의
\[
f(x) =
\begin{cases}
x + 1, & -1 < x < 0 \\
1 - x, & 0 \leq x < 1
\end{cases}
\]
이 함수 \( f(x) \)는 \(-1 < x < 1\)에서 정의되어 있으며, 주기 \( T = 2 \)를 가지도록 주기적으로 확장된다고 가정합니다. 즉, \( f(x + 2) = f(x) \)입니다.
목표
1. 함수 \( f(x) \)의 푸리에 급수를 계산하세요.
2. 푸리에 급수의 일반항을 구하고, 그 결과를 적어도 첫 몇 개의 항으로 나타내세요.
풀이 힌트
1. 주기 \( T = 2 \) 이므로, 기본 각주기는 \( \omega_0 = \frac{2\pi}{T} = \pi \) 입니다.
2. 함수 \( f(x) \)는 구간 \(-1 < x < 1\) 에서 정의되어 있으므로, 이 구간에서 푸리에 급수의 계수를 \( a_n \), \( b_n \) 계산해야 합니다.
푸리에 급수의 일반적인 표현은 다음과 같습니다:
\[
f(x) = a_0 + \sum_{n=1}^{\infty} \left( a_n \cos(n \pi x) + b_n \sin(n \pi x) \right)
\]
여기서:
- \( a_0 \)는 상수항,
- \( a_n \)과 \( b_n \)은 각각 코사인 및 사인 항의 계수로, 다음과 같이 정의됩니다:
\[
a_0 = \frac{1}{T} \int_{-1}^{1} f(x) \, dx
\]
\[
a_n = \frac{2}{T} \int_{-1}^{1} f(x) \cos(n \pi x) \, dx
\]
\[
b_n = \frac{2}{T} \int_{-1}^{1} f(x) \sin(n \pi x) \, dx
\]
각각의 계수를 구한 후, 푸리에 급수를 완성해 보세요.

댓글8
-
세상의모든계산기
1. 함수의 정의 / 정적분 확인

ㄴ
Sin 적분 경고 Warning : Domain of the result might be larger than the domain of the input.※ 이 문제에서 사용된 조각함수(Piecewise Continuous Function)는 단독으로는 적분도 되고, 미분도 되지만,
다른 함수와 결합되면(cos 함수와 곱해짐) 아쉽게도 Nspire 에서 직접 정적분되지 않습니다.
혹 정적분되더라도 approx(근사값)으로만 표시되며, 게다가 재수없으면 오류가 발생하는 경우도 있습니다.따라서 어쩔 수 없이 구간을 두 부분으로 나누어 계산하고 합쳐야 합니다.
ㄴ https://allcalc.org/52386 : [PDF] Convolution Integrals with Nspire CAS※ n 이 아니라 @n1 을 사용한 이유 : https://allcalc.org/5077 -
세상의모든계산기
2. 상수항(a₀) / 계수(an, bn) - 일반항 정의

- 1
-
-
1
세상의모든계산기
3.1 그래프 수식 입력 대안
seq() 함수로 list 를 생성하는 중간과정 없이, @n1 을 그대로 이용할 수도 있음.

- 1
-
-
세상의모든계산기
5. 라이브러리 kit_ets_mb\fourier() 사용시

라이브러리 : https://allcalc.org/52395




세상의모든계산기 님의 최근 댓글
2번 사진 3개 사진 공통적으로 구석(corner) 에 증상이 있다는 특징이 있네요. 영상 찾아보니 이 가능성이 가장 높은 듯 합니다. https://www.youtube.com/watch?v=zxRBohepzwc ㄴ Liquid Crystal Leakage (액정 누설). ㄴ 손으로 밀어내니 주변으로 밀려나네요. 그래서 점으로 보이기도 하구요. 2025 10.29 500! 의 십진수 근사값 확인 500! = 1.22013682599111006870123878542304692625357434280319284219241358838 × 10^(1134) (참값, 울프람 알파) 2025 10.29 관련 라이브러리 https://allcalc.org/56263 sgn(x) 내장된 부호 함수(signum function)와 달리, 이 함수의 sgn(0)은 0을 반환합니다. 2025 10.29 라이브러리로 사용할 수 있습니다. (제작자 추천) 1. mylib 폴더에 넣기 2. Actions ➡️ library ➡️ refresh libraries 실행 하기 2025 10.29 ChatGPT-5 기호(÷, /, :) 자체는 의미적으로 같은 “나눗셈”을 뜻하지만, 문맥(사람이 쓰는 수학 vs 컴퓨터/프로그래밍)에 따라 해석 우선순위가 달라질 수 있습니다. 🔹 1️⃣ 전통 수학 표기 — ÷, /, : 수학 교과서, 논문, 일반 문서 등에서는 셋 다 의미적으로 “나누기”로 간주됩니다. 즉, 48÷2(9+3), 48/2(9+3), 48:2(9+3) 은 같은 의미로 받아들여야 합니다. 모두 사람의 수학 관행적 해석이 적용되어 48 ÷ 2 × (9+3) = 288 로 처리되죠. 즉, 기호가 바뀌어도 결과는 바뀌지 않습니다. 🔹 2️⃣ 컴퓨터·프로그래밍 문맥에서 / 사용 시 컴퓨터는 “생략된 곱셈(implicit multiplication)”을 따로 구분하지 못합니다. 따라서 다음 두 식은 완전히 다르게 인식됩니다. 표현 파이썬 등에서 해석 결과 48 / 2*(9+3) ((48 / 2) * (9+3)) 288 48 / 2(9+3) ❌ 문법 오류 (생략된 곱셈 인식 불가) — 즉, 컴퓨터 언어에서는 생략된 곱셈이 허용되지 않기 때문에, /는 반드시 명시적 *와 함께 써야 합니다. 🔹 3️⃣ “:” 기호의 경우 현대 수학에서는 “비율”을 나타내는 기호로 쓰입니다. a:b = \frac{a}{b} 따라서 (27 : 3(1+2)3) 같은 표현은 모호하거나 비표준적으로 간주됩니다. 대부분의 경우 계산기로는 입력 자체가 불가능합니다. ✅ 정리 기호 의미 결과 변화 주로 쓰이는 문맥 ÷ 나누기 없음 초중등 수학, 일반 표기 / 나누기 없음 (단, 프로그래밍에서는 생략 곱 불허) 수학/컴퓨터 : 비율 (또는 나누기 의미로 혼용) 보통 계산식에서는 사용 안 함 비, 비율 표기 🔹 결론 48 ÷ 2(9+3), 48/2(9+3), 48:2(9+3) 는 “수학적 의미”로는 동일하게 81로 해석됩니다. 하지만 프로그래밍이나 수식 파서(context) 에서는 /만 유효하고, 생략된 곱은 허용되지 않으며, :는 아예 다른 의미(비율)로 인식됩니다. 2025 10.28