- TI nspire
[TI-nspire] 통계, (모평균의) 신뢰 구간 구하는 방법(예제). Statistics - Confidence Intervals
1. 다음 샘플의 모평균에 대한 95% 신뢰구간을 추정하시오.
샘플 = {20,20,25,21,21,23,19,18,22}
문제 출처 : http://math7.tistory.com/66
2. 기본 통계값을 구함 (생략하고 3으로 뛰어도 됨)
【menu】【6】【1】【1】 : One Variable Statistics

3. 신뢰구간 Confidence Intervals 을 구함

- tInterval 프로그램은 DATA 를 직접 이용할 수도 있고, 통계값을 이용할 수도 있다.
tInterval List [, Freq [, CLevel ]]
(Data list input)
tInterval , sx, n[, CLevel]
(Summary stats input)
- 신뢰구간에 대한 요약된 결과는 stat.results 에 저장된다.
다른 통계 프로그램이 사용하는 변수명과 동일하므로 overwrite 될 수 있다.
- sx는 모편차(σx)가 아닌, 표본의 편차임에 주의하자.
- 변수명
Output variableDescriptionstat.CLower, stat.CUpperConfidence interval for an unknown population meanstat.$\overline{x}$Sample mean of the data sequence from the normal random distributionstat.MEMargin of errorstat.dfDegrees of freedomstat.σxSample standard deviationstat.nLength of the data sequence with sample mean
댓글4
-
-
세상의모든계산기
Sample DATA가 아니라, 통계치가 주어졌을 때
문제:
어느 회사에서 전자기기용 부품인 힌지를 만들고 있습니다.
생산 라인은 안정화되어, 샘플 테스트시 고장이 발생할 때까지 접힐 수 있는 횟수는 정규 분포를 이룹니다.
평균 접히는 횟수는 25만번이고, 표준편차는 2만번으로 나타났습니다.
이번 Lot 생산품중 100개의 샘플을 수거하여 조사하였을 때
제품이 고장날 때까지 접힐 수 있는 평균 횟수의 95% 신뢰구간을 구하세요.
주어진 값
- 모집단 평균 (\(\mu\)): 250,000
- 모집단 표준편차 (\(\sigma\)): 20,000
- 샘플 크기 (\(n\)): 100
- 신뢰수준 = 95% (\( Z = 1.96 \))풀이
1. 표준 오차 (Standard Error, SE) 계산:
$ SE = \dfrac{\sigma}{\sqrt{n}} = \dfrac{20,000}{\sqrt{100}} = \dfrac{20,000}{10} \approx 2,000 $2. 95% 신뢰구간 계산: \[
\text{신뢰 구간} = \bar{X} \pm z_{\alpha/2} \times SE
\]
여기서 \(\bar{X} = \mu = 250,000\)이므로,
\[
\text{신뢰 구간} = 250000 \pm 1.96 \times 2000
\]3. 결과:
$ \text{95% 신뢰구간} = (246080, 253920) $ -
1
세상의모든계산기
6: Statistics - 6: Confidence Intervals - 1: z Interval

Data Input method : Stats

(Data list input) zInterval σ,List[,Freq[,CLevel]]
(Summary stats input) zInterval σ,$ \overline{x} $,n [,CLevel]

-
세상의모든계산기
z-interval vs t-interval 차이점
통계 프로그램에서 t-interval과 z-interval은 모집단의 평균을 추정할 때 사용하는 신뢰 구간 계산 방법으로, 모집단의 분산(또는 표준편차) 정보 유무와 표본 크기에 따라 선택됩니다.
1. z-interval (Z 신뢰 구간)
- 사용 조건: 모집단의 표준편차(\(\sigma\))를 알고 있을 때 사용합니다.
- 표본 크기 요건: 일반적으로 표본 크기가 충분히 큰 경우(보통 \( n \geq 30 \))에 사용하면 정규분포에 가깝게 추정할 수 있습니다.
- 계산: 신뢰 구간의 한계는 표준 정규분포를 이용해 계산됩니다.
- 예: \( \text{z-interval} = \bar{X} \pm Z_{\alpha/2} \times \frac{\sigma}{\sqrt{n}} \)2. t-interval (T 신뢰 구간)
- 사용 조건: 모집단의 표준편차를 모르는 경우 사용하며, 표본 표준편차(\(s\))를 대신 사용합니다.
- 표본 크기 요건: 표본 크기가 작을 때(보통 \( n < 30 \)) 또는 모집단의 분산을 알 수 없을 때 주로 사용됩니다.
- 계산: 신뢰 구간의 한계는 t-분포를 이용해 계산합니다. 이때 자유도(\(n-1\))가 필요합니다.
- 예: \( \text{t-interval} = \bar{X} \pm t_{\alpha/2, \, n-1} \times \frac{s}{\sqrt{n}} \)

세상의모든계산기 님의 최근 댓글
진짜 색약 안경은 비싸서 살 생각은 없고, 알리에서 싸구려 구매해서 테스트 해 봤습니다. 프로그램과 비슷한 효과가 있고, (프로그램과 비교해서) 알리 싸구려 렌즈가 - 숫자 구분이 아주 약간 더 잘 되고 - 붉은 색상이 더 밝습니다. 채도가 높다고 해야하는 것 같네요. 주의할 점은 알리 색약 안경은 일상용으로는 절대 사용 불가입니다. - 내부 빛반사 방지 코팅이 없어서 내 눈알이 렌즈에 비치고, 그래서 실제로 보여야 할 것과 섞여 보입니다. - 필터 코팅도 최악이라서 중심부(=마젠타) 주변부(=노랑)으로 서로 다르게 색이 들어옵니다. 전반적으로 그라데이션 발생. - 외부에서 봤을 때 렌즈색이 튀기 때문에, 티가 많이 납니다. - 색 구분 면에서는 도움이 될 수도 있지만, 녹색(특정 파장)이 차단되어 LED 신호등의 녹색이 잘 안보일 수 있습니다. 2025 12.24 교점이 2개 이상일때 모든 값을 구하는 법 계산기마다 가능/불가능이 갈릴 수도 있습니다. ㄴ fx-570 의 solve 는 무조건 한번에 하나씩 찾습니다. 따라서, 2차 3차 방정식처럼 규격화된 수식은 solve 대신 EQN 모드에서 답을 구하는게 좋습니다. ㄴ TI-nspire 같은 CAS 계산기의 solve 는 수식에 따라서 여러개가 한꺼번에 찾아지기도 합니다. https://allcalc.org/3448 ㄴ fx-9860G 의 solve는 무조건 1개, solveN 는 수식에 따라 여러개가 찾아질 수 있습니다. https://allcalc.org:443/board_casio/6005#comment_15889 가능하다면, 불확실할때는 그래프로 확인하세요. 2025 12.16 T가 410인 해를 찾는 방법 -> 초기값을 입력하세요. [공학용 계산기] 공학용 계산기의 꽃? solve (솔브) 기능 이해하기 (Newton-Raphson 법, 뉴튼법) https://allcalc.org/11532 2025 12.16 참고 - [공학용 계산기] 정적분 계산 속도 벤치마크 비교 https://allcalc.org/9677 2025 12.11 다른 계산기의 경우와 비교 1. TI-nspire CAS ㄴ CAS 계산기는 가능한 경우 부정적분을 먼저하고, 그 값에 구간을 대입해 최종값을 얻습니다. ㄴ 부정적분이 불가능할 때는 수치해석적 방법을 시도합니다. 2. CASIO fx-991 ES Plus ㄴ CASIO 계산기의 경우, 적분할 함수에 따라 시간이 달라지는 것으로 알고 있는데, 정밀도를 확보할 별도의 알고리즘을 채택하고 있는 것이 아닐까 생각되네요. 2025 12.11