- TI nspire
[TI-nspire cas] [라이브러리] laplace 라플라스 변환/역변환 2종
1. Library Specfunc
다운로드 (서버 에러인 듯) :
http://www.univers-ti-nspire.fr/activites.php?lang=&ress_id=82
아카이브 다운로드 :
http://web.archive.org/web/20200211031049/http://www.univers-ti-nspire.fr/activites.php?lang=&ress_id=82
사용 방법
specfunc.tns utils.tns 두개의 파일을 mylib 폴더에 복사해 넣으시고 사용하시면 됩니다.
자세한 사용법은 위 다운로드 링크에 동영상으로 나오니 참고하세요.
(동영상이 Adobe flash 라서 현재 재생이 불가능합니다)
- 2개의 파일(specfunc.tns, utils.tns)을 모두 계산기 My Documents\MyLib 폴더 안에 넣습니다.
- 새로운 문서(Ctrl+N) 또는 현재 문서로 가서 라이브러리를 Refresh 해 줍니다.
Doc - 6: Refresh Libraries
- Catalog 6: 탭에서 specfunc 와 utils 관련 함수가 떠 있으면 성공입니다. 잘 쓰시면 됩니다.

주의사항 : 삼각함수 취급할 때 각도는 항상 Rad 으로 설정하세요. Deg로 하면 버그납니다.
※ 참고예시 : https://seg-apps.etsmtl.ca/nspire/documents/transf%20Laplace%20prog.pdf
2. Complex Analysis Functions
다운로드 :
http://www.ticalc.org/archives/files/fileinfo/451/45165.html
기능 :
Documentation
This page includes information on the arguments and output of the library's functions. Examples can be found on the next page.
cint(f,z,plist)
Computes the contour integral of the function f of the complex variable z whose interior includes the poles of f in the list plist. (See cpoles for more information) Returns a complex number.
cpoles(f,z)
Returns a list containing the locations of all the poles of the function f of the complex variable z.
invlapl(f,p,x)
Calculates the inverse Laplace transform of the function f of the real variable p. Returns the transformed function of the real variable x.
lapl(f,x,p)
Calculates the Laplace transform of the function f of the real variable x. Returns the transformed function of the real variable p.
residue(f,z,p)
Computes the residue of the function f of the complex variable z at the point p. (p can be the point at infinity)

댓글14
- 1
- 1
- 1
- 2
- 3
-
- 1
-
tinspirechoigo2021.12.11 - 22:25 #35995nspire cx cas2 인데 컴퓨터로 cx cas2 계산기프로그램으로 돌리면 되는데 계산기에서는 계속 function is not defined 라고 뜨네요 ㅠㅠ
- 1
-
세상의모든계산기
This library file contains a direct adaptation for TI-Nspire of the set of functions and programms of the package "Advanced Laplace 1.4" originally written by Lars FREDERICKSEN for Voyage 200.
Please, do consider that this file is just a beta-version.
The original version (for V200) is available on the page:
http://www.seg.etsmtl.ca/ti/laplace.html
[TI-Nspire] 기본 기능을 이용한 라플라스 변환
https://allcalc.org/50305
세상의모든계산기 님의 최근 댓글
2번 사진 3개 사진 공통적으로 구석(corner) 에 증상이 있다는 특징이 있네요. 영상 찾아보니 이 가능성이 가장 높은 듯 합니다. https://www.youtube.com/watch?v=zxRBohepzwc ㄴ Liquid Crystal Leakage (액정 누설). ㄴ 손으로 밀어내니 주변으로 밀려나네요. 그래서 점으로 보이기도 하구요. 2025 10.29 500! 의 십진수 근사값 확인 500! = 1.22013682599111006870123878542304692625357434280319284219241358838 × 10^(1134) (참값, 울프람 알파) 2025 10.29 관련 라이브러리 https://allcalc.org/56263 sgn(x) 내장된 부호 함수(signum function)와 달리, 이 함수의 sgn(0)은 0을 반환합니다. 2025 10.29 라이브러리로 사용할 수 있습니다. (제작자 추천) 1. mylib 폴더에 넣기 2. Actions ➡️ library ➡️ refresh libraries 실행 하기 2025 10.29 ChatGPT-5 기호(÷, /, :) 자체는 의미적으로 같은 “나눗셈”을 뜻하지만, 문맥(사람이 쓰는 수학 vs 컴퓨터/프로그래밍)에 따라 해석 우선순위가 달라질 수 있습니다. 🔹 1️⃣ 전통 수학 표기 — ÷, /, : 수학 교과서, 논문, 일반 문서 등에서는 셋 다 의미적으로 “나누기”로 간주됩니다. 즉, 48÷2(9+3), 48/2(9+3), 48:2(9+3) 은 같은 의미로 받아들여야 합니다. 모두 사람의 수학 관행적 해석이 적용되어 48 ÷ 2 × (9+3) = 288 로 처리되죠. 즉, 기호가 바뀌어도 결과는 바뀌지 않습니다. 🔹 2️⃣ 컴퓨터·프로그래밍 문맥에서 / 사용 시 컴퓨터는 “생략된 곱셈(implicit multiplication)”을 따로 구분하지 못합니다. 따라서 다음 두 식은 완전히 다르게 인식됩니다. 표현 파이썬 등에서 해석 결과 48 / 2*(9+3) ((48 / 2) * (9+3)) 288 48 / 2(9+3) ❌ 문법 오류 (생략된 곱셈 인식 불가) — 즉, 컴퓨터 언어에서는 생략된 곱셈이 허용되지 않기 때문에, /는 반드시 명시적 *와 함께 써야 합니다. 🔹 3️⃣ “:” 기호의 경우 현대 수학에서는 “비율”을 나타내는 기호로 쓰입니다. a:b = \frac{a}{b} 따라서 (27 : 3(1+2)3) 같은 표현은 모호하거나 비표준적으로 간주됩니다. 대부분의 경우 계산기로는 입력 자체가 불가능합니다. ✅ 정리 기호 의미 결과 변화 주로 쓰이는 문맥 ÷ 나누기 없음 초중등 수학, 일반 표기 / 나누기 없음 (단, 프로그래밍에서는 생략 곱 불허) 수학/컴퓨터 : 비율 (또는 나누기 의미로 혼용) 보통 계산식에서는 사용 안 함 비, 비율 표기 🔹 결론 48 ÷ 2(9+3), 48/2(9+3), 48:2(9+3) 는 “수학적 의미”로는 동일하게 81로 해석됩니다. 하지만 프로그래밍이나 수식 파서(context) 에서는 /만 유효하고, 생략된 곱은 허용되지 않으며, :는 아예 다른 의미(비율)로 인식됩니다. 2025 10.28