- TI
[PDF] Nspire CAS en MAT265 : fonctions particulièrement utiles, Michel Beaudin
Nspire CAS en MAT265 : fonctions particulièrement utiles = 유용한 함수들
출처 :
https://ena.etsmtl.ca/pluginfile.php/1596240/mod_resource/content/5/Fonctions%20pour%20Nspire%20CAS_Mat%20265_A-14.pdf
tns 라이브러리 :
https://cours.etsmtl.ca/seg/mbeaudin/ETS_specfunc.tns
https://cours.etsmtl.ca/seg/mbeaudin/documents/Kit_ETS_MB.tns
https://cours.etsmtl.ca/seg/mbeaudin/Kit_ETS_FH.tns
- 안타깝게도 불어입니다.
- 수식/그림 충분히 있으니, 알아서 해석하셔야 합니다.
- 라이브러리 파일은 링크한 pdf 파일의 링크에 있습니다만, 이 글 첨부파일로 넣어두겠습니다.
Trois fonctions importantes de la librairie ETS_specfunc
Nom de la fonction Description | Description |
laplace(f) |
"주어진 표현 \( f \)의 라플라스 변환을 구하세요. 사용해야 하는 변수는 반드시 \( t \)이어야 하며, 단위 계단 함수에는 \( u(t) \), 디랙 델타 함수에는 \( \delta(t) \)를 사용하세요. 답은 \( s \)에 대한 표현이어야 합니다." |
ilaplace(F) | "변수 s인 표현 F의 라플라스 역변환을 구하세요. 답은 ttt에 대한 표현이어야 합니다." |
solved(edo, {y(t), co_ini}) | "라플라스 변환을 사용하여 미분 방정식(edo)을 풀어라. 이 방정식은 미지 함수 y(t)를 포함하며 초기 조건 $ co_{\text{ini}} $이 주어져 있다." |
Nom de la fonction | Description |
cir_rc(R, C, E, vo) cir_rl(R, L, E, io) |
"커패시터 \( C \)의 양단에서 전압 \( v(t) \)를 구하세요. RC 회로에서 소스 \( E(t) \)와 초기 전압 \( v_0 \)가 주어졌습니다. 따라서 다음 미분 방정식을 풉니다: RL 회로에서 전류 \( i(t) \)를 구하세요. 소스 \( E(t) \)와 초기 전류 \( i_0 \)가 주어졌습니다. 따라서 다음 미분 방정식을 풉니다: |
solpart(y1, y2, r, x) |
주어진 문장의 한국어 번역은 다음과 같습니다: "다음 미분 방정식에 대한 특수 해를 구하세요: |
convolap(x, h) |
"신호 \( x(t) \)와 \( h(t) \)의 컨볼루션." |
ressort(m, b, k, f, yo, vo) |
주어진 문장은 다음과 같이 한국어로 번역할 수 있습니다: "다음 미분 방정식을 풀어라: |
circuit_rlc(R, L, C, E, vo, io) |
"RLC 회로에서 커패시터 \( C \)의 양단에서 전압 \( v(t) \)를 구하세요. 소스 \( E(t) \)와 초기 전압 \( v_0 \), 초기 전류 \( i_0 \)가 주어졌습니다. 따라서 다음 미분 방정식을 풉니다: |
u_to_piece(f, x) |
"변수 \( x \)로 주어진 표현 \( f \)를 정의가 다음과 같이 주어졌을 때, 구간별 함수로 변환하세요: 1. \( u(t) := \dfrac{\text{sign}(t) +1}{2} \) 입니다. |
taylor_ode1(r, x, y, xo, yo, n) |
"1차 ODE에 대한 \( n \)차 테일러 다항식, |
taylor_ode2(r, x, y, v, xo, yo, vo, n) |
"2차 ODE에 대한 \( n \)차 테일러 다항식, \( y'' = r(x, y, y'), y(x_0) = y_0, y'(x_0) = v_0 \), . |
fourier(f, t, t1, t2, n) |
"주기 신호 \( f \)의 \( n \)차 부분합으로 단순화됩니다. 이 신호는 변수 \( t \)를 가지며, 주기는 \( t_2 - t_1 \)입니다." |
de_syst(A, g, to, yo) |
"1차 시스템 |