- TI nspire
[TI-Nspire] 기본 기능을 이용한 라플라스 변환
한국어로 번역한 문서 https://allcalc.org/50260 를 TI-Nspire 용으로 추가 가공한 문서입니다.

소개
TI 계산기에는 라플라스 변환과 역변환을 계산하기 위한 미리 프로그래밍된 함수가 없습니다.
하지만 여러 웹사이트에서 이를 제공합니다 :
역자 주) TI-nspire 용으로 컨버팅 해당 문서는 https://allcalc.org/5003 입니다.
여기서 우리가 제안하는 것은, "TI의 기본 함수만을 사용하여도 충분히 잘 해낼 수 있다는 것을 보여주는 것"입니다.
라플라스 변환
먼저 라플라스 변환은 매개변수 s의 특정 값에 대해 수렴하는 이상적분임을 주목해야 합니다:
$ f\left( t\right) \leftrightarrow F\left( s\right) \equiv \int _{0}^{\infty }f\left( t\right) \cdot e^{-s\cdot t}dt $

TI는 s에 대한 도메인이 지정되지 않으면 정의할 수 없습니다. (그림 1).∫(e^(−s*t),t,0,∞)|s>0
라플라스 변환을 함수로 정의할 수 있습니다.

하지만 TI-89와 달리 제약연산자(|) 를 한꺼번에 넣어서 정의하면 조각함수(piecewise function) 로 바뀌면서 오류가 발생합니다.
따라서 TI-nspire에서는 제약연산자 부분을 함수정의와 분리하고, 다시 함수와 결합해 사용해야 하는 불편함이 있습니다.
TI-89 에서는 위의 la(f,t,s) 함수의 수렴이 느려서 Lim 함수를 결합한 lala(f,t,s) 함수라는 대안을 찾았지만,
TI-nspire 에서는 속도가 충분히 빨라졌기 때문에 속도 때문에 대안을 찾을 필요는 없고,
다만 TI-89 에서 찾은 대안을 Nspire에서 사용하면 제약 연산자를 재결합해서 사용하지 않아도 되기 때문에
TI-nspire 에서도 유용한 대안이 됩니다.
* 여기서는 lala(f,t,s) 대신 lapl(f,t,s) 라는 함수명을 사용하겠습니다.

ㄴ lapl(f,t,s) := −lim(∫(f*e^(−s*t),t),t,0,1)
무한대에서의 값이 0이 됨을 이용하여 부적절한 적분(undef)을 피할 수 있습니다.
실제로, 라플라스 변환을 계산하는 함수들은 지수 차수입니다. 이는 s를 충분히 크게 선택하면
$ \lim _{t\rightarrow \infty }f\left( t\right) \cdot e^{-s\cdot t}=0 $ 을 얻게 된다는 것을 의미합니다.
부정적분 을 계산한 후에는 (f가 모든 곳에서 연속이고 TI가 적분 상수를 추가하지 않는다고 가정하면)
$ \int f\left( t\right) \cdot e^{-st}dt $ 라고 하면 됩니다.
극한은 t = 0에서의 평가가 0의 오른쪽에서 계산되어야 한다는 사실에서 비롯됩니다.
이제 훨씬 더 심각한 문제인 역변환을 다루겠습니다.
역 라플라스 변환
$ F\left( s\right) =\dfrac{1}{\left( s-2\right) ^{2}\cdot \left( s^{2}+6s+13\right) } $
의 역변환 계산을 고려해 봅시다.
여기서는 제곱 완성을 수행해야 합니다: 부분 분수 전개 전에 이를 수행하는 것이 좋습니다(그림 3).

변환 표에서 다음과 같은 대응관계를 알아야 합니다:
$ \dfrac{s+a}{\left( s+a\right) ^{2}+b^{2}}\leftrightarrow e^{-at}\cos bt,\dfrac{b}{\left( s+a\right) ^{2}+b^{2}}\leftrightarrow e^{-at}\sin bt $
$ \dfrac{1}{s+a}\leftrightarrow e^{-at}\text{ and }\dfrac{1}{\left( s+a\right) ^{2}}\leftrightarrow t\cdot e^{-at} $
따라서 답은
$ f\left( t\right) =\dfrac{10e^{-3t}\cos 2t}{841}+\dfrac{21e^{-3t}\sin 2t}{1682}-\dfrac{10e^{2t}}{841} +\dfrac{t \cdot e^{2t}}{29} $
입니다.
컨볼루션으로도 진행할 수 있습니다:
컨볼루션 속성에 따르면 F(s) = X(s) H(s)인 경우,
$ \text{with } F\left( s\right) \leftrightarrow f\left( t\right), X\left( s\right) \leftrightarrow x\left( t\right) \text{ and } H\left( s\right) \leftrightarrow h\left( t\right), $
$ \text{then } f\left( t\right) = x\left( t\right) \ast h\left( t\right) \equiv \int _{0}^{t}x\left( \tau \right) h\left( t-\tau \right) d\tau $
입니다.
여기서 우리는 다음 식을 얻습니다. :
$ F\left( s\right) =\dfrac{1}{\left( s-2\right) ^{2}\cdot \left( s^{2}+6s+13\right) } $
$ =\left( \dfrac{1}{\left( s-2\right) ^{2}}\right) \left( \dfrac{1}{\left( s+3\right) ^{2}+4}\right) \leftrightarrow t\cdot e^{2t}\ast \dfrac{1}{2}e^{-3t}\sin 2t $
그리고 TI는 컨볼루션 적분을 처리합니다(그림 4 a 참조).

그림 4 b와 4 c는 결과의 단순화를 보여줍니다.
복소수를 사용하여 부분 분수로 전개할 수도 있습니다.
TI에서 선언되지 않은 변수는 실수로 간주되지만, 이 변수에 밑줄 "_" 기호를 추가하면 복소수로 간주됩니다.
실제로 s가 실수인지 복소수인지에 따라 TI가 $ \dfrac{1}{s+i} $ 를 어떻게 단순화하는지 보세요(그림 5).

이 단계에서 대응관계 $ \dfrac{1}{s+a} \leftrightarrow e^{at} [ Re\left( s\right) > -a] $ 와
오일러 공식 $e^{it} =\cos(t) + i \sin(t) , \left( t\in R\right) $ 을 사용하면 복소 부분 분수가 수행된 후 역 라플라스 변환을 계산할 수 있습니다.
여기서 g(s)라고 부를 $ F\left( s\right) =\dfrac{1}{\left( s-2\right) ^{2}\cdot \left( s^{2}+6s+13\right) } $ 의 예를 다시 살펴봅시다.
부분 분수로 전개하기 전에 복소수로 인수분해하는 것이 중요합니다(그림 6 a);

이 작업은 s가 복소수라는 제약 하에 수행됩니다(그림 6 b 및 6 c).
그런 다음 복소 근이 켤레 쌍으로 나타난다는 사실을 이용하여
$ ze^{\left( 3+2i\right) t}+\overline{z}e^{\left( 3-2i\right) t}-\dfrac{10}{841}e^{2t}+\dfrac{1}{29}te^{2t}$ 라고 쓰면 됩니다.
여기서 z는 숫자 $ z = \dfrac{5}{841} + \dfrac{21}{3364}i $ 로 정의되었습니다.
TI는 "conj"를 사용하여 복소수를 켤레복소수로 만듭니다(그림 7).

미분방정식 시스템과 라플라스 변환
TI는 라플라스 변환을 사용하여 미분방정식 시스템을 해결하는 데 매우 유용할 수 있습니다.
계산기가 길고 지루한 계산을 처리하므로 사용자는 해결할 방정식만 지정하면 됩니다.
다음 시스템을 고려해 봅시다:
$ \begin{cases}\dfrac{dx}{dt}-3x-6y=27t^{2},,x\left( 0\right) =5\\ \dfrac{dx}{dt}+\dfrac{dy}{dt}-3y=5e^{t},y\left( 0\right) =-1\end{cases} $
s 도메인으로 변환하면 다음을 얻습니다:
$ \begin{cases}sX-5-3X-6Y=\dfrac{54}{s^{3}}\\ sX-5+sY+1-3Y=\dfrac{5}{s-1}\end{cases} $
여기서 X와 Y는 각각 x와 y의 라플라스 변환을 나타냅니다. 마지막으로, 우리 시스템을 행렬 형태로 다시 쓰면 다음을 해결해야 합니다:
$ \begin{bmatrix} s-3 & -6 \\ s & s-3 \end{bmatrix}\begin{bmatrix} X \\ Y \end{bmatrix}=\begin{bmatrix} \dfrac{54}{s^{3}}+5 \\ \dfrac{5}{s-1}+4 \end{bmatrix} $
TI가 개입하고 우리는 행렬을 정의합니다(그림 8).

계수 행렬을 m이라고 부르고 오른쪽 행렬을 b라고 부르기로 합니다.
좋은 옛날 크라머 방법은 이제 쓸모없어졌습니다!
실제로 TI의 "simult" 함수를 사용하면 정사각형 선형 시스템을 해결할 수 있습니다(그림 9).
지루한 행렬식의 몫을 계산할 필요가 없습니다(또는 를 입력해도 결과는 같았을 것입니다).
이제 부분 분수로 전개하기만 하면 됩니다.
"expand" 명령은 리스트와 행렬에서도 작동합니다. "expand"의 구문은 expand(exp [, var])입니다. (그림 10).

라플라스 변환 표를 사용하여 다음과 같이 쓸 수 있습니다:
$ x\left( t\right) =3e^{t}+2+6t-9t^{2} $
$ y\left( t\right) =-e^{t}-6t $
세상의모든계산기 님의 최근 댓글
> 자동차 회사의 노조가 "노조와 합의 없이 AI로봇을 공장에 들일 수 없다"는 선언을 하고 있어. 위의 내용에 적용하여 해결 방안을 만들어 줘. ✦ 네, 아주 현실적이고 시의적절한 시나리오입니다. 자동차 회사의 노조 선언은 앞으로 여러 산업 현장에서 벌어질 일의 축소판과도 같습니다. 이 문제를 앞서 나눈 대화의 해결 방안에 적용하여, '기업-노조-정부' 3자가 참여하는 '미래 지향적 대타협: AI 전환 파트너십 구축 방안'을 구체적으로 만들어 보겠습니다. 상황 분석: 노조의 선언은 '저항'이 아닌 '협상 요구' 먼저, 노조의 선언을 "기술을 맹목적으로 거부하는 러다이트 운동"으로 해석해서는 안 됩니다. 이는 일자리의 미래와 인간의 존엄성에 대한 조합원들의 지극히 합리적인 '불안'의 표현이자, 변화의 과정에서 소외되지 않고 주체적으로 참여하겠다는 강력한 '협상 요구'입니다. 따라서 해결 방안의 목표는 노조를 억누르는 것이 아니라, 이들을 AI 전환의 가장 중요한 '파트너'로 만드는 것이어야 합니다. 해결 방안: 'AI 전환 파트너십' 3자 협약 모델 이 모델은 '사회적 안전망'과 '산업적 가속 페달'의 원리를 특정 산업 현장에 맞게 구체화한 것입니다. 1. 기업의 역할: '이익 공유'와 '재교육 투자'를 통한 신뢰 구축 기업은 AI 로봇 도입으로 얻게 될 막대한 이익을 독점하는 대신, 그 과실을 노동자들과 공유하고 이들의 미래에 투자하는 모습을 보여주어야 합니다. ① 생산성 향상 이익 공유제 도입: * AI 로봇 도입으로 발생하는 비용 절감액과 생산성 향상분의 일정 비율(예: 20%)을 노사 합의로 'AI 전환 기금'으로 적립합니다. 이 기금은 아래의 재교육 및 전환 배치 프로그램의 재원으로 사용됩니다. ② 대규모 사내 재교육 및 '신(新)직무' 전환 배치: * 단순 조립 라인의 노동자를 해고하는 대신, 이들을 새로운 시대에 필요한 인력으로 재교육하여 전환 배치합니다. 이것이 바로 '기여 인센티브' 개념을 기업 내에서 실현하는 것입니다. * '로봇 유지보수 및 운영 전문가': 현장 경험이 풍부한 노동자들이 로봇의 일상적인 점검, 유지보수, 운영을 책임집니다. * 'AI 시스템 모니터링 및 평가자': 로봇의 생산 데이터를 모니터링하고, 로봇의 움직임이나 작업 결과가 비정상적일 때 이를 식별하고 평가하는 역할을 합니다. (예: "이 로봇의 용접 불량률이 높아지고 있다.") * '공정 데이터 라벨러 및 AI 트레이너': 숙련된 인간 노동자의 정교한 움직임과 문제 해결 과정을 데이터로 기록하고, 이를 AI가 학습할 수 있도록 가공(라벨링)합니다. 이는 AI 로봇의 완성도를 높이는 가장 중요한 '데이터 노동'이며, 기존 노동자들에게 새로운 고부가가치 직무를 제공합니다. 2. 노조의 역할: '저항의 주체'에서 '전환의 주체'로 노조는 고용 안정을 보장받는 대신, AI 도입에 협력하며 조합원들이 새로운 시대에 적응하도록 이끄는 역할을 맡습니다. ① 단계적 AI 도입 협력: * 회사가 제안한 '이익 공유' 및 '재교육' 계획을 신뢰하고, AI 로봇 도입 자체에 대한 반대를 철회합니다. 대신, 가장 위험하거나 반복적인 공정부터 로봇을 도입하는 '단계적 계획'을 회사와 함께 수립합니다. ② 재교육 프로그램 공동 설계 및 운영: * 회사가 제공하는 재교육 프로그램이 실효성이 있는지 감시하고, 현장 노동자들의 눈높이에 맞게 커리큘럼을 공동으로 설계하고 운영합니다. ③ '신(新)직무'에 대한 임금 및 단체 협약 체결: * 'AI 트레이너', '로봇 운영 전문가' 등 새롭게 만들어진 직무에 대한 적정한 임금 수준, 노동 조건, 권익 보호를 위한 새로운 단체 협약을 회사와 체결합니다. 노조의 역할이 '기존 일자리 사수'에서 '미래 일자리의 가치 창출 및 권익 보호'로 진화하는 것입니다. 3. 정부의 역할: '안전망' 제공과 '가속 페달' 지원 정부는 이 대타협이 원활하게 이루어지도록, 기업과 노조 양측 모두에게 인센티브를 제공하고 최후의 안전망을 구축합니다. ① 'AI 전환 투자 세제 혜택' 제공 (가속 페달): * 회사가 'AI 전환 기금'에 출연하는 금액과, 노동자 재교육에 투자하는 비용에 대해 파격적인 세액 공제 혜택을 줍니다. 이는 회사가 노동자를 해고하는 대신 재교육을 선택하도록 유도하는 강력한 당근이 됩니다. ② '전환기 고용보험' 적용 (안전망): * 불가피하게 전환 배치되지 못하는 소수의 노동자들을 위해, 일반 실업급여보다 더 긴 기간 동안, 더 높은 수준의 소득을 보장하는 특별 고용보험 프로그램을 적용합니다. 재취업 및 창업 지원도 병행합니다. ③ 국가적 '기본소득/기여 인센티브' 모델의 시범 사업으로 지정: * 이 자동차 공장의 사례를 국가 전체의 사회 시스템 전환을 위한 중요한 시범 사업으로 지정하고, 재교육 참여자나 신직무 종사자에게 국가 차원의 '기여 인센티브'를 추가로 제공하는 방안을 모색합니다. 결론 이러한 3자 파트너십을 통해, 노조의 선언은 더 이상 '위기'가 아닌 '기회'가 됩니다. 기업은 노사 갈등 없이 안정적으로 미래 경쟁력을 확보하고, 노동자들은 일자리를 잃는 대신 새로운 기술 시대의 주역으로 거듭나며, 정부는 사회적 혼란을 최소화하며 산업 구조 전환을 성공적으로 이끌 수 있습니다. 이는 AI 시대의 갈등을 해결하는 가장 현실적이고 상생 가능한 모델이 될 것입니다. 2026 01.28 은행앱 통합하면서 없어졌나보네요. ㄴ 비슷한 기능 찾으시는 분은 : 스마트 금융 계산기 검색해 보세요. https://play.google.com/store/apps/details?id=com.moneta.android.monetacalculator 2026 01.25 Ctrl+Z 를 이용해 뒤로 돌아기기 Undo 기능이 있는지 살펴보세요. 2026 01.23 쌀집계산기로 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 https://allcalc.org/56739 3. 'x' 값 구하기 계산기 조작법 목표: x = Dx / D = [(c×e) - (b×f)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 1 * 1 M+ : 메모리(M)에 1를 더합니다. (현재 M = 1) -0.1 * -0.2 M- : 메모리(M)에서 0.02를 뺍니다. (현재 M = 0.98 = 0.98) 이로써 메모리(MR)에는 분모 0.98가 저장됩니다. 2단계: 분자 Dx 계산 후 나누기 78000 * 1 : 78000를 계산합니다. = : GT에 더합니다. -0.1 * 200000 : -20000를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. // sign changer 버튼 사용 GT : GT를 불러옵니다. GT는 98000 (분자 Dx) 값입니다. ÷ MR = : 위 결과(98000)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 x값 100,000를 구합니다. 4. 'y' 값 구하기 계산기 조작법 목표: y = Dy / D = [(a×f) - (c×d)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 'x'에서와 분모는 동일하고 메모리(MR)에 0.98가 저장되어 있으므로 패스합니다. 2단계: 분자 Dy 계산 후 나누기 GT ± = : GT를 불러오고 부호를 뒤집어 GT에 더합니다. GT가 0으로 리셋됩니다. 【AC】를 누르면 M은 유지되고 GT만 리셋되는 계산기도 있으니 확인해 보세요. 1 * 200000 : 200000를 계산합니다. = : GT에 더합니다. 78000 * -0.2 : -15600를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. GT : GT를 불러옵니다. 215600 (분자 Dy) 값입니다. ÷ MR = : 위 결과(215600)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 y값 220,000를 구합니다. x, y 값을 이용해 최종 결과를 구합니다. 2026 01.18 크레이머 = 크레머 = 크라메르 공식 = Cramer's Rule https://allcalc.org/8985 2026 01.18