- TI nspire
[TI-nspire] 통계 - normCdf 누적분포함수, 정규분포 문제 풀이, feat. binomcdf
1. 정규분포
normCdf(lowBound,upBound[,μ[,σ]]) ⇒
number if lowBound and upBound are numbers, list if lowBound and upBound are lists
Computes the normal distribution probability between lowBound and upBound for the specified μ (default=0) and σ (default=1).
For P(X ≤ upBound), set lowBound = -9E999.
문제 출처 : http://math7.tistory.com/49
1. 평균 800, 표준편차 40 정규분포
x≤750 일 확률?
normCdf(−∞,750,800,40)
= normCdf(−∞,−1.25,0,1) = normCdf(−∞,−1.25)
= 0.10564983896266
2. 평균 11, 분산 16 정규분포
20 ≤ x 일 확률?
normCdf(20,∞,11,√(16))
= normCdf(2.25,∞,0,1) = normCdf(2.25,∞)
= 0.012224433401682
3. 평균 70, 표준편차 8 정규분포
80 ≤ x ≤ 90 학생의 비율?
normCdf(80,90,70,8)
= normCdf(1.25,2.5,0,1) = normCdf(1.25,2.5)
= 0.099440159109161

※ 표준화 하지 않아도, 계산기로 즉시 결과를 구할 수 있다.
표준화하는 이유는 표준화되지 않은 확률밀도함수를 매번 적분하기가 까다로워서인데, 계산기는 매번 적분하는데 큰 무리가 없기 때문에 굳이 표준화하는 수고를 거칠 필요가 없음. (맞나?)
2. 이항분포 vs 정규분포
문제 출처 : http://suhak.tistory.com/110
1. 검은 공 1 + 흰 공 3 인 주머니에서 공을 꺼내보고 다시 넣는다. 192회 시행시 검은 공이 48번 이상 60번 이하 나올 확률은?

└
정규분포와 이항분포는 가까울 뿐, 똑같지는 않다!
2. 주사위 450회 던질 때 3의 배수가 나온 횟수가 130회 이상 170회 이하일 확률?

3. 주의
normCDF() 계산 결과값에 오차가 조금 있는 듯 합니다.



세상의모든계산기 님의 최근 댓글
V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다. 이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다. 2026 02.04 A) 1*3*5*7*9 = 계산 945 B) √ 12번 누름 ㄴ 12회 해도 되고, 14회 해도 되는데, 횟수 기억해야 함. ㄴ 횟수가 너무 적으면 오차가 커짐 ㄴ 결과가 1에 매우 가까운 숫자라면 된 겁니다. 1.0016740522338 C) - 1 ÷ 5 + 1 = 1.0003348104468 D) × = 을 (n세트) 반복해 입력 ㄴ 여기서 n세트는, B에서 '루트버튼 누른 횟수' 3.9398949655688 빨간 부분 숫자에 오차 있음. (소숫점 둘째 자리 정도까지만 반올림 해서 답안 작성) 참 값 = 3.9362834270354... 2026 02.04 1. 분모 먼저 계산 400 × 10000 = 100 × 6000 = GT 결과값 4,600,000 역수 처리 ÷÷== 결과값 0.00000021739 2. 분자 곱하기 ×3 00 00 00 ×4 00 ×1 00 00 최종 결과 = 2,608,695.65217 2026 02.04 해결 방법 1. t=-1 을 기준으로 그래프를 2개로 나누어 표현 ㄴ 근데 이것도 tstep을 맞추지 않으면 문제가 발생할 것기도 하고, 상관이 없을 것 같기도 하고... 모르겠네요. 2. t=-1 이 직접 계산되도록 tstep을 적절하게 조정 tstep=0.1 tstep=0.01 도 해 보고 싶지만, 구간 크기에 따라 최소 tstep 이 변하는지 여기서는 0.01로 설정해도 0.015로 바뀌어버립니다. 그래서 tstep=0.02 로 하는게 최대한 긴 그래프를 얻을 수 있습니다. 2026 02.02 불연속 그래프 ti-nspire는 수학자처럼 연속적인 선을 그리는 것이 아니라, 정해진 `tstep` 간격으로 점을 찍고 그 점들을 직선으로 연결하는 'connect-the-dots' 방식으로 그래프를 그립니다. 여기에 tstep 간격에 따라 특이점(분모=0)이 제외되어 문제가 나타난 것입니다. seq(−2+0.13*t,t,0,23) {−2.,−1.87,−1.74,−1.61,−1.48,−1.35,−1.22,−1.09,−0.96,−0.83,−0.7,−0.57,−0.44,−0.31,−0.18,−0.05,0.08,0.21,0.34,0.47,0.6,0.73,0.86,0.99} t=-1 에서 그래프를 찾지 않습니다. 그 좌우 값인 −1.09, −0.96 두 값의 그래프값을 찾고, Window 범위를 보고 적당히 (연속되도록) 이어서 그래프를 완성하는 방식입니다. 그래서 t=-1에서도 그래프 값이 존재하는 것입니다. 2026 02.02