- TI nspire
[TI-nspire CAS] Function - cSolve : 복소수 해 찾기

1. cSolve 란?
- cSolve 는 '복소수가 포함된 수식'이나 '복소수가 해인 수식'의 해를 찾는 함수입니다.
- 찾아진 해는 실수꼴일 수도 있고, 실수꼴이 아닐 수도 있습니다.
- cSolve 는 도메인이 real 로 설정된 상태이더라도, 일시적으로 도메인을 복소수로 지정합니다.
하지만, 복소수를 취급하실거면 rectangular 든 polar든 선택하시는 것이 좋습니다.
2. 사용 예 1 (방정식, 부등식)
- cSolve(Equation, Var) ⇒ Boolean expression
- cSolve(Equation, Var=Guess) ⇒ Boolean expression
- cSolve(Inequality, Var) ⇒ Boolean expression
3. 사용 예 2 (연립 방정식)
- cSolve(Eqn1 and Eqn2 [and…], VarOrGuess1, VarOrGuess2 [, … ]) ⇒ Boolean expression
- cSolve(SystemOfEqns, VarOrGuess1, VarOrGuess2 [, …]) ⇒ Boolean expression
- 모든 방정식(Eqn)이 다항식(polynomials)이고, 어떠한 초기 추정값도 지정되지 않았다면, cSolve 는 모든 복소수 해를 결정하기 위해 lexical Gröbner/Buchberger elimination method 를 사용합니다.
- 어떠한 방정식(Eqn)이라도 어떠한 변수에 대해 다항식이 아니(non-polynomial)고, 어떠한 초기 추정값도 지정되지 않았으며, 모든 방정식이 모든 해 변수들에 대해 리니어(linear)하다면, cSolve 는 모든 해를 결정하기 위해 Gaussian elimination 을 사용합니다.
- 계산 소요 시간이나 메모리 사용량은 해로 적어놓은 변수의 순서(order)에 매우 크게 영향을 받습니다. 만약 (무한 루프 등) 인내력의 한계에 도달하게 된다면, 방정식 내의 변수들이나 해로 지정한 변수 리스트를 재조정해보시는 것도 좋습니다.
- 연립 방정식 시스템이 모든 변수들에 대해 다항식도 아니고 해 변수들이 리니어하지도 않(non-linear)다면, cSolve는 최적의 해 하나를 찾기 위해 approximate iterative method 를 사용합니다.
조건 1 : '해 변수의 갯수' = '방정식의 갯수'
조건 2 : 방정식 내 모든 변수들이 숫자로 간소화될 수 있어야 함.
4. 주의사항
- cSolve 는 TI-nspire (non-CAS) 에서는 사용할 수 없습니다.
- OS 버전에 따라 cSolve 결과가 다를 수도 있습니다.
- Setting 에서
가급적(x)반드시(!) Angle=Radian 으로 바꿔두세요.
Degree 등일 때는 "Error: Domain error" 내지 "false" 오류가 발생할 수 있습니다. - 결과값의 표시 방법은 Document Setting - Real or Complex Format 에 영향을 받습니다.

x-y 직교좌표일 때는 Rectangular 를 선택하시는 것을 추천드리고,
r-θ 극좌표일 때는 Polar를 선택하시면 됩니다. 이 때는 Deg / Rad 에 또 영향을 받습니다. - solve와 비교하면 계산 시간이 오래 걸릴 수 있고, 재수가 없으면 무한 루프에 빠지기도 합니다.
이러한 사태를 방지하기 위해서는 초기값을 넣어주시면 해결될 수 있습니다.
approx로 계산해서 해결되기도 합니다.
5. 상세 설명

- solve와 달리 csolve는 실수해/복소수해 모두를 찾아줍니다.
- (이 예제에서) 'Solve 해집합' ⊂ 'cSolve 해집합' 성립
- 분모가 홀수인 분수 지수꼴에서는 'Solve 해집합' ⊂ 'cSolve 해집합'이 아닐 수 있음.

- cSolve 는 우선적으로 exact symbolic method 를 사용하지만, 경우에 따라 (알아서) 반복 근사법을 사용하기도 합니다.

- (복소수 연립방정식에서) 간혹 무한 루프에 빠지는 경우가 있습니다. (모래시계)
- 이 때는 【on】 버튼을 길게 눌러 연산을 강제로 멈추게(break, "Calculation Interrupted") 할 수 있습니다.
http://www.allcalc.org/4619 - 아니면 명령시부터 【ctrl】【enter】 를 이용해 반복 근사법만 계산하도록 강제할 수도 있습니다.
이 때 결과값은 소숫점 형태(Decimal Form)로만 표현됩니다. - 아니면 변수에 초기 추정값을 지정하는 방법을 사용할 수도 있습니다.
추정값은 실수나 복소수 모두 가능합니다.

- 변수(var)끝에 밑줄(underscore)을 붙이면, 변수_(var_) 는 복소수로 취급됩니다.
- 복소수해를 가질 가능성이 있는 수식에서는 모든 다른 변수들에도 밑줄을 붙여주는 편이 좋습니다.
그렇지 않으면 기대하지 않은 결과값을 찾을 가능성이 있습니다.


- 연립방정식은 값이 없는 추가 변수(c_)를 포함할 수 있고, 이것은 나중에 숫자로 치환될 수 있습니다.

- 수식에는 없는 변수(w_) 를 포함하는 해
- 여기서 c 는 constants 의 약자입니다. (뒤에 붙는 숫자는 1~255까지 순차적으로 결정됩니다.)

- Gaussian elimination
- Approximate iterative method
- 복소수 해를 결정하기 위해서, 종종 복소수 초기 추정값이 필요합니다.
댓글2
-
세상의모든계산기
csolve 와 무한 루프
[TI-nspire] 계산기 먹통(=무한 루프=모래 시계=무한 로딩) 강제종료 방법
https://allcalc.org/4619

무한루프 회피하려면?
ㄴ 초기값 입력 or approx 계산 【ctrl】【enter】하면 되는데,
이 경우에는 approx 계산방법으로는 해결되지 않네요.
세상의모든계산기 님의 최근 댓글
오류 발생 https://www.youtube.com/watch?v=dcg0x5SjETY 위 영상의 문제의 함수를 직접 구해 보았습니다. 그래프로는 잘 확인이 되는데... fmin(), fmax() 함수로 직접 구해보니, 결과가 기대한 것과 다르네요. 구간을 넣지 않으니 fmim, fmax 둘 다에서 오류인 결과를 내놓습니다. 구간을 넣더라도, 적절하게 넣지 않으면, 답이 잘 안나오는 걸 확인할 수 있습니다. fmin 은 그나마 x=0을 기준으로 나누지 않더라도 답이 나오는 편이지만, fmax 는 -10~10 을 구간으로 넣을 때, 가운데 x=0 근방에서 그래프가 위로 솟아오르는 구간은 함수값을 확인하지 않는 듯 합니다. ㄴ fmax가 더 열등해서 그런 것은 아니고, 뒤집어진 모양에서는 반대로 fmin이 못찾습니다. 구간 범위가 커질 경우, 함수에 적용하여 계산하다가 숫자 허용 한계를 벗어나서 overflow 가 나서 오류가 발생할 수도 있는 듯 합니다. 뒤에 점을 넣으니 경고 문구가 추가로 나오긴 했는데, ⚠️ Questionable accuracy. When applicable, try using graphical methods to verify the results. 그래도 실망이네요. * 믿음직한 녀석은 아닌 듯 하니, 주의 표시 ⚠️가 나오든 안나오든, 사용에 주의하시기 바랍니다. 가급적이면 그래프로 검증해 보시는게 좋겠습니다. 2025 10.26 예시 8-1 : 분수식 solve시 오류 예시, 분모에 들어간 X³을 X로 치환해 해결? https://allcalc.org/56074 2025 10.25 fx-570 CW 는 아래 링크에서 https://allcalc.org/56026 2025 10.24 불러오기 할 때 변수값을 먼저 확인하고 싶을 때는 VARIABLE 버튼 【⇄[x]】목록에서 확인하고 Recall 하시면 되고, 변수값을 이미 알고 있을 때는 바로 【⬆️SHIFT】【4】로 (A)를 바로 입력할 수 있습니다. 2025 10.24 fx-570 CW 로 계산하면? - 최종 확인된 결과 값 = 73.049507058478629343538 (23-digits) - 오차 = 6.632809104889414877 × 10^-19 꽤 정밀하게 나온건 맞는데, 시뮬레이션상의 22-digits 와 오차 수준이 비슷함. 왜 그런지는 모르겠음. - 계산기중 정밀도가 높은 편인 HP Prime CAS모드와 비교해도 월등한 정밀도 값을 가짐. 2025 10.24