- TI nspire
[TI-nspire CAS] [Program] pfe, 다항식 부분분수화 프로그램 (실수단위, 복소수단위)
1. 프로그램 소개
Partial Fraction Expansion Program
for TI-Nspire CAS ver 0.1 (2015-11-17)
by allcalc.org
http://www.allcalc.org/10272
---
Define LibPub pfe(ex)=
Prgm
:
:© Set mode to Exact
:setMode(5,1)
:
:© Set mode to float6
:setMode(1,5)
:
:© Var for PFE Level
:Local level
:1→level
:
:© Determine alphabet var for inputted expression
:Local var,ds,s_denom
:string(getDenom(ex))→s_denom
:For ds,1,dim(s_denom)
: If 96<ord(mid(s_denom,ds,1))<123 Then
: expr(mid(s_denom,ds,1))→var
: Goto esc_var
: EndIf
:EndFor
:
:Disp "Use Var as ""x"" or ""s"" or ""t"" at the beginning"
:Goto end
:
:Lbl esc_var
:
:© Allocate vars for numerator,denominator,quotient,remainder
:Local ex_num,ex_denom,ex_quotient,ex_remainder
:© exact(ex)→ex
:ex_num:=getNum(ex)
:ex_denom:=getDenom(ex)
:ex_quotient:=exact(polyQuotient(ex_num,ex_denom))
:ex_remainder:=polyRemainder(ex_num,ex_denom)
:If string(exact(ex_quotient))="0" Then
: Disp "Polynomial is : ",ex
:Else
: Disp "PolyRemainder : ",ex_remainder
: Disp "Denominator : ",ex_denom
: Disp "--- --- --- ---"
:EndIf
:
:© Get Multiple Roots
:Local roots,roots_m,roots_p,roots_c,roots_r,temp_multivar
:zeros(ex_denom,var)→roots
:ex_denom|var=9999000000.→temp_multivar
:getType(temp_multivar)→temp_multivar
:If temp_multivar="NUM" Then
: polyRoots(ex_denom,var)→roots_p
:Else
: roots→roots_p
:EndIf
:
:newList(dim(roots))→roots_m
:{}→roots_c
:{}→pfe.result
:{}→pfe.resultc
:Local i
:For i,1,dim(roots)
: countIf(roots_p,roots[i])→roots_m[i]
:EndFor
:
:© Calculate coefficient for each roots
:Local j,k,temp_pd,temp_ex
:((ex_remainder)/(ex_denom))→temp_ex
:For j,1,dim(roots)
: For k,1,roots_m[j]
:(factor(((ex_num)/(ex_denom))*(var-roots[j])^(roots_m[j]),var),var,k-1)→roots_r
:
:(var-roots[j])^(roots_m[j]-k+1)→temp_pd
: augment(roots_c,{propFrac(((roots_r)/((k-1)!)))|var=roots[j]})→roots_c
: augment(pfe.result,{((roots_c[dim(roots_c)])/(temp_pd))})→pfe.result
: temp_ex-((roots_c[dim(roots_c)])/(temp_pd))→temp_ex
: EndFor
:EndFor
:
:© Check for complex roots
:If string(factor(temp_ex))≠"0" Then
: If left(string(getNum(temp_ex)),6)="1.−13" Then
: Disp "It may be Approximate Result."
: 1→level
: Goto level_approx
: EndIf
:
:© Request Level of PFE (Real or Complex)
: Request "Select PFE Level 1=Real, 2=Complex",level,0
: If string(level)≠"2" Then
: 1→level
: EndIf
:
: If level=1 Then
: augment(pfe.result,{temp_ex})→pfe.result
: Else
: Disp "PFE to Complex Number Level"
: Local exc_num,exc_denom
: exc_num:=getNum(temp_ex)
: exc_denom:=getDenom(temp_ex)
:
: Local croots,croots_c,croots_r
: cPolyRoots(exc_denom,var)→croots
: newList(dim(croots))→croots_c
: newList(dim(croots))→croots_r
:
: Local l
: For l,1,dim(croots)
: cFactor(cFactor(((exc_num)/(exc_denom)),var)*(var-croots[l]),abc987)→croots_r[l]
: cFactor(croots_r[l],abc987)|var=croots[l]→croots_c[l]
: If abs(croots_c[l])>9.−11 Then
: cFactor(augment(pfe.resultc,{((croots_c[l])/(factor(var-croots[l])))}))→pfe.resultc
: EndIf
: EndFor
:
: EndIf
:EndIf
:
:Lbl level_approx
:
:© Display result as matrix form
:If string(ex_quotient)≠"0" Then
:{ex_quotient}→pfe.resultq
: Disp factor(list▶mat(pfe.resultq))
:EndIf
:
:If dim(pfe.result)≠0 Then
: Disp factor(list▶mat(pfe.result))
:EndIf
:
:If level=2 Then
: Disp factor(list▶mat(pfe.resultc))
:EndIf
:
:If temp_multivar="EXPR" Then
: Disp "PFE once more!"
: pfe(ex_quotient)
:EndIf
:Lbl end
:EndPrgm
- 입력 예
pfe(exprs)
: 변수는 알파벳 소문자 어떤 것이라도 가능합니다. 다만, 분모의 왼쪽으로부터 처음으로 발견되어야만 합니다.
실수근에 대하여는 묻지 않고 부분분수로 강제로 나눕니다.
분모에 복소수근이 있는 경우에는, 복소수 차원으로 부분분수시킬 것인지를 프로그램이 물어볼 것입니다.
- 결과의 저장
- pfe.result (기본값, 실수범위 부분분수 결과)
- pfe.resultc (복소범위 분해 결과)
- pfe.resultq (분자/분모의 몫(quotient)이 있는 경우)
2. 사용 예제

└ 실수 수준의 부분분수화는 기본 내장함수인 expand() 를 사용하는 것이 편리합니다.

└ 계수가 소숫점 형태이거나 근사값으로 부분분수화가 진행되는 경우, expand() 에서 부분분수화가 제대로 되지 않는 때가 있습니다. 이 때는 pfe() 프로그램이 도움이 될 수 있습니다.

└ 1:Real Number 수준에서 진행한 경우. expand()와 차이가 나지 않음

└ 2:Complex Number 수준으로 진행한 경우
3. 주의사항
- 허수근에 대한 다차식이 있는 경우에는 문제가 발생함
expand() 로 해결 - 상수가 아닌 미지수 근에 대해서는 문제가 발생할 가능성이 큼
expand() 로 해결 - 프로그램 작성 초기버전이라서 기타 문제 발생 가능성이 있습니다. 제보 바랍니다.
분모나 분자에 소수점이 있는 경우 결과가 근사값 형태로 표시될 수 있습니다.
(특별한 사정이 있지 않은 이상)
분모분자에 적당한 수를 곱해 exact 계산 형태로 바꾸시는 걸 추천합니다.
└ 입력식에 소숫점이 있는 경우 (0.5)

└ 분모 분자에 10을 곱하여 입력한 경우. (10 대신 2를 곱해도 같은 결과)
※ 이것은 expand() 함수에서도 마찬가지로 적용됩니다.
댓글16
-
1
세상의모든계산기
복소범위 부분분수화한 결과가 R1+R2+R3+C1+C2 꼴이면
- pfe.result=R1+R2+R3
- pfe.resultc=C1+C2
의 결과를 얻습니다.
실수까지만 보인다고 하시니 pfe.result 를 말씀하시는 것 같네요.
그게 아니고 pfe.resultc 를 그냥 호출하신 경우라면, 계산기의 고유한 특징으로 인하여 변수에 저장된 값에 상관없이 결과를 화면에 표시할 때는 무조건 분모를 유리화합니다.

따라서 유리화하지 않고 그대로 다시 보기 위해서는 factor(pfe.resultc) 로 불러내야 합니다.
[추가] 변수 s를 s_로 변경하는 방법도 가능하네요.

- 2
-
2
세상의모든계산기
factor()를 사용하지 않고, 변수를 s 대신 s_ 로 대치

프로그램을 수정해서 변수를 모두 s_로 바꾸는게 나을런지?
복소수 결과 pfe.resultc 만 s_ 로 바꾸는게 나을런지?
-
세상의모든계산기
간혹 버그가 발생하네요.

저렇게 2.1E-12 와 같이 작은 숫자가 곱해진 부분은 버그일 가능성을 의심해보시는게 좋겠습니다.
* 프로그램을 고칠 가능성은 현재로선 낮습니다. -_-'
- 1
-
ytg0602
프로그램을 쓰던 중에 오류가 생겨서 댓글 달아봅니다. 매트랩 홈페이지에서 부분 분수 전개에 대한 예제에 대한 식으로 한번 프로그램을 써봤는데요.
각각 해당 식들을 입력하고 복소수 레벨에서 실행시키면 에러 메시지가 A conditional statement did not resolve to TRUE or FALSE라는 메시지가 뜹니다. level 누를 때 2로 눌렀던 걸로 기억합니다. 보니까 조건식에서 에러가 나는 것 같은데 혹시 버그인지 제가 사용법을 몰라서 못 쓰는 건지 궁금합니다.
해당 매트랩 홈페이지 주소는 https://kr.mathworks.com/help/matlab/ref/residue.html입니다.
그리고 해당 식들은 (2*s^3+s^2)/(s^3+s^2+1)과 (2*s^4+s)/(s^2+1)입니다. -
1
세상의모든계산기
첫번째 예제는 ERROR가 나는 상황이고,
두번째 예제는 문제가 없는 듯 합니다.
버그가 맞구요.
뭔가 잘못된 건 확실한데...디버깅하는 것이
저에게는 0에서 다시 시작하는 것과 같기 때문에 손이 가질 않네요. - 2
- 1
-
세상의모든계산기2023.04.11 - 18:35 #38678오픈 AI에 코드를 보여주니
LibPub pfe()는 Casio 계산기에서 지원하는 프로그래밍 언어로 작성된 프로그램입니다. 주어진 유리 함수의 PFD(partial fraction decomposition)를 찾기 위해 설계된 사용자 정의 함수로 미적분학 및 대수학에서 유용한 기법입니다. 프로그램은 먼저 계산기를 Exact 모드와 float6 모드로 설정합니다. 그런 다음 사용자에게 분수 형식의 유리수 함수를 입력하라는 메시지가 표시됩니다. 그런 다음 프로그램은 "x", "s" 또는 "t" 식에 사용된 변수를 식별합니다. 사용된 변수가 이 세 가지 중 하나가 아니면 프로그램은 오류 메시지를 표시합니다. 다음으로, 프로그램은 분모에 의한 분자의 다항식 나눗셈의 몫과 나머지를 찾습니다. 몫이 0이면 프로그램은 원래 다항식을 표시합니다. 그렇지 않으면 나머지와 분모를 표시합니다. 그런 다음 프로그램은 분모의 여러 근을 찾고 각 근에 대한 계수를 계산합니다. 복소수가 있는 경우 PFD 수준(실수 또는 복소수)을 선택하라는 메시지가 표시됩니다. 실제인 경우 프로그램은 결과를 행렬로 표시합니다. 복소수인 경우 프로그램은 복소수 근을 찾아 해당 계수를 계산하고 결과를 행렬로 표시합니다. 전반적으로 LibPub pfe()는 많은 수학적 문제를 해결하는 데 필수적인 유리 함수의 부분 분수 분해를 찾는 강력한 도구입니다. -
1
세상의모든계산기2023.04.11 - 18:36 #38681개선할 점은 없냐 물어보니...
귀하의 프로그램은 잘 작성되고 포괄적인 것 같습니다. 그러나 개선을 위한 몇 가지 제안을 제공할 수 있습니다.
오류 처리 추가: 프로그램은 사용자가 유효한 입력을 입력했다고 가정합니다. 사용자가 잘못된 입력을 입력하는 경우 프로그램 충돌을 방지하기 위해 오류 처리를 추가하는 것이 도움이 될 것입니다.
가독성 향상: 주석을 추가하고 긴 코드 줄을 여러 줄로 나누어 코드의 가독성을 높일 수 있습니다.
설명이 포함된 변수 이름 추가: 일부 변수 이름은 짧고 설명이 많지 않습니다. 더 설명적인 변수 이름을 사용하면 코드를 더 쉽게 이해할 수 있습니다.
사용자가 변수 이름을 입력하도록 허용: 사용자에게 특정 변수 이름을 사용하도록 요청하는 대신 사용하려는 변수 이름을 입력하도록 허용할 수 있습니다.
더 많은 옵션 추가: 프로그램은 현재 다항식의 부분 분수 확장 계산만 지원합니다. 함수의 라플라스 변환 계산과 같은 더 많은 옵션을 추가하는 것을 고려할 수 있습니다. - 1
-
1
세상의모든계산기
Exact float6 Disp "Enter rational function in the form of a/b(x)" Prompt a,b,x If x="x" or x="s" or x="t" Then q:=a/b // 몫 계산 r:=a-q*b // 나머지 계산 If q=0 Then Disp "The original polynomial is:" Disp r Else Disp "The quotient is:" Disp q Disp "The remainder is:" Disp r EndIf roots:=poly_roots(b,x) coeffs:=List(0,dim(roots)) For i,root In roots Do If Im(root)=0 Then // 근이 실수인 경우 coeff:=limit(a/b/(x-root),x,root) Else // 근이 복소수인 경우 Disp "Select PFD level for complex roots of", root Menu "PFD Level", ["Real", "Complex"] If Ans=1 Then // PFD level: Real coeff:=limit(a/b/(x-root),x,root) Else // PFD level: Complex coeff_real:=limit(a/b/(x-Re(root)),x,Re(root)) coeff_imag:=limit(a/b/(x-Im(root)),x,Im(root)) coeff:=Matrix([[coeff_real,coeff_imag],[-coeff_imag,coeff_real]]) EndIf EndIf coeffs[i]:=coeff EndFor If dim(roots)=0 Then Disp "No roots found." Else Disp "Coefficients:" Disp coeffs EndIf Else Disp "Error: Invalid variable used" Stop EndIf설명만 입력하고 ti nspire 용으로 만들어 달랬더니 위와 같이 만들어줬습니다.
대충 ti basic 하고 비슷은 한데, 못쓰는 명령어도 짬뽕되어 있고 그렇네요.
세상의모든계산기 님의 최근 댓글
500! 의 십진수 근사값 확인 500! = 1.22013682599111006870123878542304692625357434280319284219241358838 × 10^(1134) (참값, 울프람 알파) 2025 10.29 관련 라이브러리 https://allcalc.org/56263 sgn(x) 내장된 부호 함수(signum function)와 달리, 이 함수의 sgn(0)은 0을 반환합니다. 2025 10.29 라이브러리로 사용할 수 있습니다. (제작자 추천) 1. mylib 폴더에 넣기 2. Actions ➡️ library ➡️ refresh libraries 실행 하기 2025 10.29 ChatGPT-5 기호(÷, /, :) 자체는 의미적으로 같은 “나눗셈”을 뜻하지만, 문맥(사람이 쓰는 수학 vs 컴퓨터/프로그래밍)에 따라 해석 우선순위가 달라질 수 있습니다. 🔹 1️⃣ 전통 수학 표기 — ÷, /, : 수학 교과서, 논문, 일반 문서 등에서는 셋 다 의미적으로 “나누기”로 간주됩니다. 즉, 48÷2(9+3), 48/2(9+3), 48:2(9+3) 은 같은 의미로 받아들여야 합니다. 모두 사람의 수학 관행적 해석이 적용되어 48 ÷ 2 × (9+3) = 288 로 처리되죠. 즉, 기호가 바뀌어도 결과는 바뀌지 않습니다. 🔹 2️⃣ 컴퓨터·프로그래밍 문맥에서 / 사용 시 컴퓨터는 “생략된 곱셈(implicit multiplication)”을 따로 구분하지 못합니다. 따라서 다음 두 식은 완전히 다르게 인식됩니다. 표현 파이썬 등에서 해석 결과 48 / 2*(9+3) ((48 / 2) * (9+3)) 288 48 / 2(9+3) ❌ 문법 오류 (생략된 곱셈 인식 불가) — 즉, 컴퓨터 언어에서는 생략된 곱셈이 허용되지 않기 때문에, /는 반드시 명시적 *와 함께 써야 합니다. 🔹 3️⃣ “:” 기호의 경우 현대 수학에서는 “비율”을 나타내는 기호로 쓰입니다. a:b = \frac{a}{b} 따라서 (27 : 3(1+2)3) 같은 표현은 모호하거나 비표준적으로 간주됩니다. 대부분의 경우 계산기로는 입력 자체가 불가능합니다. ✅ 정리 기호 의미 결과 변화 주로 쓰이는 문맥 ÷ 나누기 없음 초중등 수학, 일반 표기 / 나누기 없음 (단, 프로그래밍에서는 생략 곱 불허) 수학/컴퓨터 : 비율 (또는 나누기 의미로 혼용) 보통 계산식에서는 사용 안 함 비, 비율 표기 🔹 결론 48 ÷ 2(9+3), 48/2(9+3), 48:2(9+3) 는 “수학적 의미”로는 동일하게 81로 해석됩니다. 하지만 프로그래밍이나 수식 파서(context) 에서는 /만 유효하고, 생략된 곱은 허용되지 않으며, :는 아예 다른 의미(비율)로 인식됩니다. 2025 10.28 ChatGPT-5 💯 네, 정확히 그 지점을 짚으셨어요. 요약하면 이렇게 말할 수 있습니다: “생략된 곱하기(implicit multiplication)”는 문자에서는 강한 결합력을 인정하지만, 숫자나 괄호 사이에서는 일반 곱셈(×)과 동일한 우선순위로 취급된다. 즉, 문자에서는 더 강하게 결합, 숫자·괄호 사이에서는 그냥 ‘보통 곱셈’ 으로 본다는 것이 현대 수학 표기와 계산기의 관행적 규칙입니다. 🔹 두 경우의 구조적 차이 식 형태 실제 해석 결과 결합력 특징 ab ÷ ab 문자 붙음 ((a×b) ÷ (a×b)) 1 문자 간 결합이 강함 → 한 항으로 인식 3(1+2)3 숫자·괄호 혼합 (3 × (1+2) × 3) 27 생략된 ×는 보통 곱셈 → 좌→우 규칙 적용 🔹 왜 문자식은 결합력이 더 강한가? 기호적 표현의 안정성 (ab), (xy), (2x) 같은 표기는 수백 년 동안 “하나의 곱셈 항(term)”으로 인식되어 왔습니다. 그래서 수학자들은 이걸 암묵적으로 “괄호로 묶인 덩어리”로 봅니다. ab ÷ ab = (ab) ÷ (ab) 함수 표기와 구분 필요 예: (sinx ÷ x) 에서 sinx는 sin(x)로 묶여야 의미가 있습니다. 이런 이유로 “문자 옆에 붙은 기호나 문자”는 항상 먼저 결합되도록 하는 관행이 굳어졌습니다. 🔹 반면 숫자·괄호에서는 (3(1+2)) 는 단순히 “3 × (1+2)”의 약식 표현이고, 여기서 “생략된 곱셈”은 “명시적 곱셈”과 동일한 연산자로 간주됩니다. 따라서 27 ÷ 3(1+2)3 = 27 ÷ 3 × 3 × 3 = 81 처럼 좌→우 순서로 처리합니다. 🔹 결론 생략된 곱하기(implicit multiplication)의 결합력은 표기 맥락에 따라 다르다. 문자/기호와 함께 쓰일 때 → 강하게 결합 (하나의 항으로 인식) 숫자와 괄호 사이 → 일반 곱셈과 동일한 우선순위 (좌→우 계산) 이건 “규칙이 바뀐 것”이 아니라, 표기 문법(context) 이 달라서 ‘결합 단위(token)’이 달라진 결과라고 보는 게 가장 정확합니다. 2025 10.28