- TI 89
Error: Dependent limit, 적분 변수 중복에 의한 에러
Error # |
Dependent limit The same variable can't be used as both an integration variable and a bound. For example, ∫(sin(x),x,0,x) wouldn't be allowed. |
http://tibasicdev.wikidot.com/68k:errors
적분할 때 적분 변수(dx) 를 적분 구간에 넣을 수 없습니다.
따라서 둘 중 하나는 변수명을 다르게 변경해야 에러를 해결할 수 있습니다.
에러 예시)
ㄴ 적분 구간 상단을 X에서 Y로 변경하면 문제가 해결됩니다.
댓글 2
-
-
-
수학적 정의
적분 변수와 동일한 변수를 적분 구간에 미지수로 사용하는 것은 일반적으로 정의상 문제가 됩니다.
즉, \( \int_1^x f(x) \, dx \)처럼 적분 변수와 상한 또는 하한에 같은 변수를 사용하는 것은 수학적으로 잘못된 표현입니다.
이유:
적분 과정에서 적분 변수는 일시적인 더미 변수로 사용되며, 구간과 함수의 미지수와는 구별되어야 합니다. 만약 적분 변수와 구간의 변수가 같다면, 혼란이 생길 수 있으며 일관된 계산을 할 수 없습니다.이러한 구별은 단순히 표기법의 문제가 아니라 적분의 본질적인 의미와 연관되어 있습니다. 적분 변수는 함수의 정의역을 "스캔"하는 역할을 하며, 구간의 끝점은 그 스캔의 범위를 정의합니다. 이 두 가지 역할은 분명히 구별되어야 합니다.
올바른 접근:
올바르게 사용하려면 적분 변수를 다른 기호로 바꾸어야 합니다.예를 들어, 다음과 같이 적분 변수를 \( t \)로 정의하고, 구간의 변수는 \( x \)로 남겨두는 것이 일반적입니다:
\[
\int_1^x f(t) \, dt
\]
여기서 \( t \)는 적분 변수이고, \( x \)는 적분 구간의 미지수입니다.
예시:
만약 \( f(t) = t^2 \)라면, 아래와 같은 적분을 계산할 수 있습니다:
\[
\int_1^x t^2 \, dt = \frac{x^3}{3} - \frac{1^3}{3} = \frac{x^3}{3} - \frac{1}{3}
\]
이 적분 결과는 \( x \)에 대한 함수가 되고, 상한에서 \( x \)가 변화함에 따라 적분 결과도 달라집니다.
결론적으로, 적분 변수와 구간 변수는 명확하게 구분되어야 하며, 동일한 변수를 구간에 사용하는 것은 부적절합니다.
-
TI-Nspire CX 와 비교
ㄴ 적분변수(dx)와 같은 문자를 적분구간에 넣더라도 에러는 발생하지 않습니다.