- TI nspire
[TI-nspire] 지수 회귀 방정식, Exponential Regression

1. 실험 DATA
특정 미생물의 농도는 이론적으로 시간에 따라 다음 식과 같이 변한다고 한다.
$$ C = a \cdot \exp(-b \cdot t) = a \cdot e^{-b \cdot t}$$
실험에서 시간 \( t = 1 \)부터 \( t = 2.5 \)까지의 4개의 데이터 포인트에 대해 미생물 농도 \( C \) 값은 다음과 같다:
\[
\begin{array}{|c|c|}
\hline
t & C \\
\hline
1.0 & 6.05 \\
1.5 & 4.73 \\
2.0 & 3.69 \\
2.5 & 2.86 \\
\hline
\end{array}
\]
2. 회귀 방정식 (Regression)
주어진 식 \( C = a \cdot \exp(-b \cdot t) \)는 지수 함수 형태로, 지수적으로 감소하는 함수이기 때문에 이를 지수적 감소(exponential decay) 모델이라고 부르기도 합니다.
원래의 모형(공식)을 알고 있다면 그 모형과 가장 유사한 방식의 회귀 방정식을 선택하면 되고,
원래의 모형을 모르는 경우라면 데이터 값의 추세를 보고 결정해야 합니다.
위의 예에서는 (데이터 값이 적긴 하지만) 시간에 따라 자연적으로 감소하는 데이터의 형태를 보입니다.
예를 들어 방사성 붕괴나 미생물 성장/감소 등이 이러한 데이터 추세를 가집니다.
이러한 형태의 비선형 회귀 방정식을 지수 회귀 방정식(exponential regression)이라고 합니다.
실험 데이터를 바탕으로 지수 회귀 방정식의 \( a \)와 \( b \) 값을 추정하는 방법은 다음과 같은 단계를 따릅니다.
1. 양변에 자연 로그 취하기
주어진 식을 선형화하기 위해 양변에 자연 로그를 취합니다.
\[
\ln(C) = \ln(a) - b \cdot t
\]
즉, \( \ln(C) \)는 \( t \)에 대한 선형 함수가 됩니다:
\[
\ln(C) = -b \cdot t + \ln(a)
\]
이 식은 기울기가 \( -b \)이고, 절편이 \( \ln(a) \)인 직선 방정식입니다.
2. 데이터를 선형화
실험 데이터에서 \( t \)와 \( C \)의 값을 이용하여 \( \ln(C) \) 값을 계산합니다.
\[
\begin{array}{|c|c|c|}
\hline
t & C & \ln(C) \\
\hline
1.0 & 6.05 & \ln(6.05) = 1.800 \\
1.5 & 4.73 & \ln(4.73) = 1.554 \\
2.0 & 3.69 & \ln(3.69) = 1.306 \\
2.5 & 2.86 & \ln(2.86) = 1.051 \\
\hline
\end{array}
\]
3. 선형 회귀 분석
이제 \( \ln(C) \)와 \( t \)의 관계를 나타내는 선형 방정식의 기울기와 절편을 구하기 위해 선형 회귀 분석을 수행합니다. 선형 회귀는 다음과 같은 방정식을 사용합니다:
- 기울기 \( m \) (즉, \( -b \))는 다음과 같이 계산됩니다:
\[
m = \frac{n \sum t_i \ln(C_i) - \sum t_i \sum \ln(C_i)}{n \sum t_i^2 - (\sum t_i)^2}
\]
여기서:
- \( n = 4 \) (데이터 포인트의 개수)
- \( t_i \)와 \( \ln(C_i) \)는 주어진 데이터에서 가져옵니다.
데이터를 정리
\[
\begin{array}{|c|c|c|}
\hline
t_i & C_i & \ln(C_i) & t_i^2 & t_i \ln(C_i) \\
\hline
1.0 & 6.05 & 1.800 & 1.0 & 1.0 \cdot 1.800 = 1.800 \\
1.5 & 4.73 & 1.554 & 2.25 & 1.5 \cdot 1.554 = 2.331 \\
2.0 & 3.69 & 1.306 & 4.0 & 2.0 \cdot 1.306 = 2.612 \\
2.5 & 2.86 & 1.051 & 6.25 & 2.5 \cdot 1.051 = 2.628 \\
\hline
\end{array}
\]
각 합을 계산
이제 필요한 합들을 계산해보겠습니다:
1. \( \sum t_i = 1.0 + 1.5 + 2.0 + 2.5 = 7.0 \)
2. \( \sum \ln(C_i) = 1.800 + 1.554 + 1.306 + 1.051 = 5.711 \)
3. \( \sum t_i^2 = 1.0 + 2.25 + 4.0 + 6.25 = 13.5 \)
4. \( \sum t_i \ln(C_i) = 1.800 + 2.331 + 2.612 + 2.628 = 9.371 \)
기울기 \( m \) 계산
이제 이 값들을 공식에 대입해 \( m \)을 계산합니다.
\[
m = \dfrac{4 \cdot 9.371 - 7.0 \cdot 5.711}{4 \cdot 13.5 - 7.0^2} = -0.499
\]
- 절편 \( c \) 는 다음과 같이 계산됩니다:
\[
c = \frac{\sum \ln(C_i) - m \sum t_i}{n}
\]
여기에 이미 계산된 값을 대입해보겠습니다:
- \( \sum \ln(C_i) = 5.711 \)
- \( m = -0.499 \)
- \( \sum t_i = 7.0 \)
- \( n = 4 \)
$$ \text{절편 } c = \dfrac{5.711 - (-0.499 \times 7.0)}{4} = 2.301 $$
선형 회귀 방정식
$$ y = mx+c = -0.499 \cdot t + 2.301 $$
4. 지수 회귀 방정식으로 전환 : \( a \)와 \( b \) 구하기
선형 회귀 방정식에서 구한
기울기 \( m = -0.499\)이 \( -b \)이므로, 이를 이용해 \( b = 0.499\) 값을 구할 수 있고,
절편 \( c = ln(a \cdot e^{t})|_{t=0} = \ln(a) \)이므로, 이를 이용해 \( a \) 값을 구할 수 있습니다:
\( a \)는 이 값의 자연 로그 역함수이므로, \( a = \exp(2.301) \approx 9.98 \)입니다.
위 과정을 통해 최종적으로 지수 회귀 방정식을 구하였습니다.
$$ C = 9.98 \cdot \exp(-0.499 \cdot t) = 9.98 \cdot e^{-0.499 \cdot t} $$
3. TI-nspire 의 활용
기본 데이터 값의 입력 및 계산

ln(c) 의 선형 회귀 계산


ㄴ ∑ 함수를 말고 sum() 함수에 list 변수를 넣어서 계산하면 간단합니다.
ㄴ 여기서는 단지 공식을 표현하기 위해 사용한 것 뿐입니다.
지수 회귀 직접 계산
: 공학용 계산기에는 지수 회귀 방정식 기능이 있기 때문에 앞서 ln(c)를 선형회귀하는 과정이 불필요합니다.

그런데
구해진 TI-nspire 의 지수 회귀 방정식은 $ y = a \cdot e^{-b \cdot t} $ 꼴이 아니고,
$ y = a \cdot b^{t} $ 꼴이기 때문에 마지막으로 한번 더 계산이 필요합니다.
ㄴ solve 또는 ln() 으로 간단하게 찾을 수 있습니다.
한번에 찾을 방법은
(현재 기본 기능만으로는) DataQuest 앱을 이용하는 방법 뿐입니다. : 댓글 참고
불편하면 프로그램(라이브러리)를 만들어야겠죠.
댓글5
-
세상의모든계산기
최소자승법(최소 제곱법, Least Squares Method)을 행렬로 푸는 방법은 다음과 같은 수식을 사용합니다:
\[
\hat{\beta} = (A^T A)^{-1} A^T y
\]여기서:
- \( A \)는 독립 변수 \( t \)의 행렬
- \( y \)는 종속 변수 \( \ln(C) \)의 벡터
- \( \hat{\beta} \)는 구하려는 계수 벡터로, 기울기 \( b \)와 절편 \( \ln(a) \)가 들어갑니다.1. 행렬 \( A \), \( y \) 정의
주어진 데이터에서 \( t \)와 \( \ln(C) \) 값을 이용하여 다음과 같이 행렬 \( A \)와 벡터 \( y \)를 정의할 수 있습니다:# 데이터:
\[
\begin{array}{|c|c|}
\hline
t & \ln(C) \\
\hline
1.0 & 1.800 \\
1.5 & 1.554 \\
2.0 & 1.306 \\
2.5 & 1.051 \\
\hline
\end{array}
\]행렬 \( A \)는 상수항(절편)을 포함하기 위해 \( 1 \)을 추가하여 다음과 같이 구성됩니다:
\[
A = \begin{pmatrix}
1 & 1.0 \\
1 & 1.5 \\
1 & 2.0 \\
1 & 2.5
\end{pmatrix}
\]벡터 \( y \)는 종속 변수인 \( \ln(C) \) 값을 사용하여 구성됩니다:
\[
y = \begin{pmatrix}
1.800 \\
1.554 \\
1.306 \\
1.051
\end{pmatrix}
\]2. \( A^T A \) 계산
행렬 \( A^T \)는 \( A \)의 전치 행렬이므로 다음과 같습니다:\[
A^T = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1.0 & 1.5 & 2.0 & 2.5
\end{pmatrix}
\]이제 \( A^T A \)를 계산합니다:
\[
A^T A = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1.0 & 1.5 & 2.0 & 2.5
\end{pmatrix}
\begin{pmatrix}
1 & 1.0 \\
1 & 1.5 \\
1 & 2.0 \\
1 & 2.5
\end{pmatrix}
\]\[
A^T A = \begin{pmatrix}
4 & 7.0 \\
7.0 & 13.5
\end{pmatrix}
\]3. \( A^T y \) 계산
다음으로 \( A^T y \)를 계산합니다:\[
A^T y = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1.0 & 1.5 & 2.0 & 2.5
\end{pmatrix}
\begin{pmatrix}
1.800 \\
1.554 \\
1.306 \\
1.051
\end{pmatrix}
\]\[
A^T y = \begin{pmatrix}
1.800 + 1.554 + 1.306 + 1.051 \\
1.0 \cdot 1.800 + 1.5 \cdot 1.554 + 2.0 \cdot 1.306 + 2.5 \cdot 1.051
\end{pmatrix}
\]\[
A^T y = \begin{pmatrix}
5.711 \\
9.371
\end{pmatrix}
\]4. 계수 벡터 \( \hat{\beta} \) 계산
이제 계수 벡터 \( \hat{\beta} \)는 다음과 같이 구할 수 있습니다:\[
\hat{\beta} = (A^T A)^{-1} A^T y
\]먼저 \( A^T A \)의 역행렬을 구합니다:
\[
(A^T A)^{-1} = \frac{1}{(4 \cdot 13.5 - 7.0^2)} \begin{pmatrix} 13.5 & -7.0 \\ -7.0 & 4 \end{pmatrix}
\]\[
(A^T A)^{-1} = \frac{1}{5.0} \begin{pmatrix} 13.5 & -7.0 \\ -7.0 & 4 \end{pmatrix}
\]\[
(A^T A)^{-1} = \begin{pmatrix} 2.7 & -1.4 \\ -1.4 & 0.8 \end{pmatrix}
\]이제 역행렬과 \( A^T y \)를 곱하여 \( \hat{\beta} \)를 구합니다:
\[
\hat{\beta} = \begin{pmatrix} 2.7 & -1.4 \\ -1.4 & 0.8 \end{pmatrix} \begin{pmatrix} 5.711 \\ 9.371 \end{pmatrix}
\]\[
\hat{\beta} = \begin{pmatrix} (2.7 \cdot 5.711) + (-1.4 \cdot 9.371) \\ (-1.4 \cdot 5.711) + (0.8 \cdot 9.371) \end{pmatrix}
\]계산하면:
\[
\hat{\beta} = \begin{pmatrix} 15.4197 - 13.1194 \\ -7.9954 + 7.4968 \end{pmatrix}
\]\[
\hat{\beta} = \begin{pmatrix} 2.3003 \\ -0.4986 \end{pmatrix}
\]5. 결과
따라서, \( \hat{\beta} = \begin{pmatrix} 2.3003 \\ -0.4986 \end{pmatrix} \), 이는 다음을 의미합니다:
- 절편 \( \ln(a) \approx 2.3003 \), 따라서 \( a = \exp(2.3003) \approx 10.0 \)
- 기울기 \( b \approx 0.4986 \)이 방법을 통해 \( a \)와 \( b \) 값을 행렬 계산을 사용하여 구할 수 있습니다.
-
1
-
세상의모든계산기
fx-570 을 이용한 계산 방법
https://allcalc.org/51166
* fx-570 에는 e^X 꼴, A*B^X 꼴 둘 다 있어서 한번에 되는데...

왜 TI-nspire 에는 왜 하나만 있지?

있는데 방법을 모르는 것 뿐인가?
-
1
세상의모든계산기
vernier DataQuest 앱에는 해당 기능이 있습니다. Natural exponential Regression

출처 : https://groups.google.com/g/tinspire/c/97sKKp8WVB0
보니까 직접 실험장치를 통해 얻은 데이터만 쓸 수 있는게 아니고,
계산기에 입력된 리스트값도 링크해서 쓸 수 있네요. Link from List



-


세상의모든계산기 님의 최근 댓글
3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은 조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요. 100÷7 = 14.285714285714285714285714285714 소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다. 2025 12.30 그럼 해가 무한히 많은지 아닌지 어떻게 아느냐? 고등학교 수학 교과과정에 나오는 행렬의 판별식(d, determinant)을 이용하면 알 수 있습니다. ㄴ 고교과정에서는 2x2 행렬만 다루던가요? 연립방정식의 계수들로 행렬을 만들고 그 행렬식(determinant)을 계산하여야 합니다. 행렬식이 d≠0 이면 유일한 해가 존재하고, d=0 이면 해가 없거나 무수히 많습니다. * 정상적인 경우 (`2y + 8z = 115`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 8 | 행렬식 값 = 1(0 - (-7)) - 1(8 - 0) = 7 - 8 = -1 (0이 아니므로 유일한 해 존재) * 문제가 된 경우 (`2y + 7z = 100`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 7 | 행렬식 값 = 1(0 - (-7)) - 1(7 - 0) = 7 - 7 = 0 (0이므로 유일한 해가 존재하지 않음) 2025 12.30 좀 더 수학적으로 말씀드리면 (AI Gemini 참고) 수학적 핵심 원리: 선형 독립성(Linear Independence) 3원 1차 연립방정식에서 미지수 x, y, z에 대한 단 하나의 해(a unique solution)가 존재하기 위한 필수 조건은 주어진 세 개의 방정식이 서로 선형 독립(linearly independent) 관계에 있어야 한다는 것입니다. * 선형 독립 (Linearly Independent): 어떤 방정식도 다른 방정식들의 조합(상수배를 더하거나 빼는 등)으로 만들어질 수 없는 상태입니다. 기하학적으로 이는 3개의 평면(각 방정식은 3D 공간의 평면을 나타냄)이 단 한 개의 점(해)에서 만나는 것을 의미합니다. * 선형 종속 (Linearly Dependent): 하나 이상의 방정식이 다른 방정식들의 조합으로 표현될 수 있는 상태입니다. 이 경우, 새로운 정보를 제공하지 못하는 '잉여' 방정식이 존재하는 것입니다. 기하학적으로 이는 3개의 평면이 하나의 선에서 만나거나(무수히 많은 해), 완전히 겹치거나, 혹은 평행하여 만나지 않는(해가 없음) 상태를 의미합니다. 질문자님의 사례는 '선형 종속'이 되어 무수히 많은 해가 발생하는 경우입니다. 2025 12.30 질문하신 연립 방정식은 미지수가 3개이고 모두 1차인 3원 1차 연립방정식입니다. 이상적으로 문제가 없다면 {x,y,z} 에 대한 좌표가 하나 나오게 됩니다. 원하는 답 {52.5, -2.5, 15} 그런데 두개 조건(식)을 그대로 두고 나머지 하나를 변형하다 보니 원하는 답이 나오지 않는 상황이 발생하였다고 질문하신 상황입니다. 3개의 조건식이 주어진 3원 1차 연립방정식은 조건을 변형해서 하나의 변수를 제거할 수 있습니다. 그러면 2개의 조건식으로 주어지는 2원 1차 연립방정식으로 변형할 수 있습니다. (알아보기 더 쉬워서 변형하는 겁니다) 변경하지 않은 조건의 식(con1) 을 이용해 하나의 y & z 1차 방정식을 유도할 수 있는데요. 나머지 방정식이 con1에서 유도된 방정식과 동일해지면 하나의 답이 구해지지 않는 것입니다. 계산기(ti-nspire)는 {x,y,z} 의 답이 하나가 아니고 무수히 많음을 c1 을 이용해서 표현해 준 것입니다. linear_independence_cond12.tns 2025 12.30