[일반 계산기] 【%】 퍼센트 버튼을 활용한 계산 방법 (2가지 타입, Type의 구분)
일반 계산기에는 【%】 버튼이 (대부분) 있습니다.
일반적인 % 에 대한 인식(상식)을 가지고 계산기에서 【%】 버튼을 누르다 보면 (백이면 백) 오류가 발생합니다.
【%】버튼이 ÷100 으로 계산되는 것 이외에도, 사칙연산 버튼(심지어 상수계산 기능)과 특수하게 조합되면서 예상하지 않은 함수로 작동하기 때문입니다.
퍼센트(%)와 관련한 계산에서, 그런 특수한 함수기능을 활용하면
버튼 입력 횟수를 줄일 수 있을 뿐 아니라, 일반 계산기로는 불가능한 계산까지도 할 수 있어 편리하게 사용할 수 있습니다.
장사하면서 하루에도 열번 스무번씩 할인액 계산하고, 마진 계산하고 하는 분이라면 분명히 도움이 됩니다.
하지만
사용을 할 것 같으면 사용법을 확실하게 익히고 난 다음에 사용을 해야지,
평소에 【%】기능을 쓸 일이 많지 않아서, 완벽하게 익히지 못할 것 같으면 【%】 버튼을 아예 사용하지 않는 것이 이득입니다.
계산기의 2종류 타입(<K TYPE> 과 <non-K TYPE>)에 따라 입력 순서나 조합도 다르고,
사용법을 한두번 본다고 완벽하게 모든 기능이 손에 익숙해지지 않기 때문입니다.
더듬더듬 입력하거나, 실수로 잘못입력해서 다시 처음부터 입력해야 하는 상황이 발생하면
시간만 잡아먹고, 계산 결과에 신뢰가 떨어지는 악영향이 있습니다.
% 를 안쓰고 대신 100으로 나눈 소숫점 숫자로 바꿔 입력하는게 전혀 어려운 일이 아니기 때문에,
가능하면 % 를 사용하는 대신 소숫점으로 계산하시는 것을 추천드리는 것입니다.
※ Type 의 구분에 관하여는 다음 글을 참고하세요.
<카시오 K TYPE>
| 수식 | 키 입력 | 결과 값 |
|---|---|---|
| 100×5% = 5 | ![]() ![]() ![]() ![]() ![]() |
5 |
| 100 + (100×5%) = 105 | ![]() ![]() ![]() ![]() ![]() ![]() |
105 |
| 10 - (10×20%) = 8 | ![]() ![]() ![]() ![]() ![]() ![]() |
8 |
| 30 = 60 × ? % | ![]() ![]() ![]() ![]() ![]() ![]() |
50 |
| 12 - 10 = (10×? %) | ![]() ![]() ![]() ![]() ![]() ![]() |
20 |
| 120 + 160× 25% = 160 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
160 |
| ㄴ 연속 계산 160 - 120 = 40 | ![]() |
40 |

적용 대상 : (상수계산시 K가 표시되는) CASIO 계산기 대부분.
(일부 CASIO 계산기는 Non-K타입입니다)
<Non-K TYPE>
ㄴ 사진 출처 : Canon HS-1200TS Instructions

└ 사진출처 : CASIO DX-12S_EN.pdf
적용대상 : SHARP, CANON 계산기 등 상수계산시 K 표시가 없는 계산기
(카시오 계산기 중에도 일부 non-K 타입이 있습니다.)
※ 【MU】 버튼이 없는 계산기는 MU 를 이용한 계산을 할 수 없습니다. MU 는 Mark-Up 의 약자로, 원가 가산율을 의미합니다.
주의
- % 계산 뒤에 추가계산을 하려면 【=】를 입력해야 할 수도 있습니다.
반대로, 마지막에 【=】 를 입력하면 문제가 생기는 계산기도 있습니다.
이런 경우에는 【GT】와 호환성이 좋지 않으므로 【M】 메모리를 이용하는 것이 좋습니다.
- <K Type> 과 <Non-K Type>의 구분은 편의상 명칭한 것으로 널리 쓰이는 용어는 아닐 수 있습니다.
또한 하나의 Type 에 해당한다고 해서 모두 똑같은 동작을 한다고 단정할 수 없습니다. 회사별로 세세한 기능의 차이가 있을 가능성도 있습니다.
(법으로 정해진 건 아니니까요)
- 숙달되지 않으면 【%】 버튼은 결과의 오류를 발생시킬 수 있으므로, 손가락에 완전 익숙해지도록 연습하거나, 아예 안쓰거나를 선택하시는게 좋겠습니다.
댓글9
- 1
-
세상의모든계산기
예시 문제 : [K타입] 10000-30%를 하면 33233.33333... 이 나오는데요... 무슨값일까요?
https://kin.naver.com/qna/detail.nhn?d1id=11&dirId=1126&docId=319013482
판매가(10000) 원가(100) 일 때 원가 대비 이익률(%) 구하는 입력
【10000】 【-】 【30】 【%】 의 의미?
10000은 30 과 몇 퍼센트 차이가 나는지 계산
⇔ 10000 = 30 + (30 × ?%) = 30 * (1 +?%)
⇔ (10000-30) 은 30의 몇 배인지를 퍼센트 단위로 계산
⇔ 10000 - 30 = (30 × ?%)
30에다가 30의 33233.33333%를 더하면 10,000
※ 매출액 125원이고, 매출 원가가 100원이면 원가대비 이익률은 몇 퍼센트인가? 이런 계산할 때 씁니다.
입력 【125】 【-】 【100】 【%】
결과 25 (퍼센트) - 1
- 1
-
세상의모든계산기
K타입 상수계산과 % 결합 예시
https://kin.naver.com/qna/detail.naver?d1id=11&dirId=1113&docId=480853041
버튼 입력 화면 결과 계산식 1 -- 2 % 100 2-1 = 1×(x%) % 9900 100-1 = 1×(x%) % 989900 9900-1 = 1×(x%)











세상의모든계산기 님의 최근 댓글
V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다. 이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다. 2026 02.04 A) 1*3*5*7*9 = 계산 945 B) √ 12번 누름 ㄴ 12회 해도 되고, 14회 해도 되는데, 횟수 기억해야 함. ㄴ 횟수가 너무 적으면 오차가 커짐 ㄴ 결과가 1에 매우 가까운 숫자라면 된 겁니다. 1.0016740522338 C) - 1 ÷ 5 + 1 = 1.0003348104468 D) × = 을 (n세트) 반복해 입력 ㄴ 여기서 n세트는, B에서 '루트버튼 누른 횟수' 3.9398949655688 빨간 부분 숫자에 오차 있음. (소숫점 둘째 자리 정도까지만 반올림 해서 답안 작성) 참 값 = 3.9362834270354... 2026 02.04 1. 분모 먼저 계산 400 × 10000 = 100 × 6000 = GT 결과값 4,600,000 역수 처리 ÷÷== 결과값 0.00000021739 2. 분자 곱하기 ×3 00 00 00 ×4 00 ×1 00 00 최종 결과 = 2,608,695.65217 2026 02.04 해결 방법 1. t=-1 을 기준으로 그래프를 2개로 나누어 표현 ㄴ 근데 이것도 tstep을 맞추지 않으면 문제가 발생할 것기도 하고, 상관이 없을 것 같기도 하고... 모르겠네요. 2. t=-1 이 직접 계산되도록 tstep을 적절하게 조정 tstep=0.1 tstep=0.01 도 해 보고 싶지만, 구간 크기에 따라 최소 tstep 이 변하는지 여기서는 0.01로 설정해도 0.015로 바뀌어버립니다. 그래서 tstep=0.02 로 하는게 최대한 긴 그래프를 얻을 수 있습니다. 2026 02.02 불연속 그래프 ti-nspire는 수학자처럼 연속적인 선을 그리는 것이 아니라, 정해진 `tstep` 간격으로 점을 찍고 그 점들을 직선으로 연결하는 'connect-the-dots' 방식으로 그래프를 그립니다. 여기에 tstep 간격에 따라 특이점(분모=0)이 제외되어 문제가 나타난 것입니다. seq(−2+0.13*t,t,0,23) {−2.,−1.87,−1.74,−1.61,−1.48,−1.35,−1.22,−1.09,−0.96,−0.83,−0.7,−0.57,−0.44,−0.31,−0.18,−0.05,0.08,0.21,0.34,0.47,0.6,0.73,0.86,0.99} t=-1 에서 그래프를 찾지 않습니다. 그 좌우 값인 −1.09, −0.96 두 값의 그래프값을 찾고, Window 범위를 보고 적당히 (연속되도록) 이어서 그래프를 완성하는 방식입니다. 그래서 t=-1에서도 그래프 값이 존재하는 것입니다. 2026 02.02