- TI nspire
[TI-nspire] DMS, 도분초 관련 기능
TI-Nspire 계산기 설정에서 각도는 Radian / Degree / Gradian 3가지 중 하나로 설정할 수 있습니다.
이 때 Degree(도) 는 계산기에서는 소숫점 형태를 기본으로 합니다.
즉, 계산 결과값이 1.5˚에 해당할 때는 각도 단위는 생략하고 수치값 1.5 만을 결과로 표시하죠.
이 소숫점 값은 도분초(DMS) 형식으로 표현할 수도 있고, 반대로 도분초(DMS) 형식의 값을 (각도단위를 생략한) Decimal 형식으로 표현할 수도 있습니다.
그리고 소숫점 값에 각도단위만 붙여 표현하게 할 수도 있습니다.
DMS 형식으로 입력하려면
1. 템플릿 키를 눌러서 선택하시는게 좋습니다.

DMS 가 한 단위로 입력됩니다.
2. 카탈로그에서 DMS 단위를 찾아 쓰거나, Degree, Minutes, Seconds 단위를 개별적으로 찾아 쓰실 수도 있지만 더 번거롭다고 생각합니다.

[Degree 모드일 때]

설명
ㄴ 1˚2'3" + 4˚5'6" 를 계산하면, 그 결과는 5˚7'9'' 이지만, TI-nspire 는 각도결과일 때 "단위를 생략하고,
소숫점 형태로 표시함"을 기본으로 하기 때문에 5˚7'9'' 에 해당하는 참값(여기서는 분수)으로 표시하는 것입니다.
ㄴ ▶DD 명령은 결과값에 각도 단위를 붙여서 표시하는 기능입니다.
ㄴ ▶DMS 명령은 수치 값을 각도 단위 DMS 로 표시하는 기능입니다.
[주의]
- 스프레드시트에서는 DMS 계산이 안되는 듯 합니다. https://allcalc.org/32957
댓글5
- 1
- 2
-
3
세상의모든계산기
레퍼런스 가이드
►Base2

►Base10

변환은 이런 식으로 하고
직접 입력은 이런 식으로 합니다.
Binary or hexadecimal numbers always have a 0b or 0h prefix, respectively. 0b binaryNumber 0h hexadecimalNumber Zero, not the letter O, followed by b or h. A binary number can have up to 64 digits. A hexadecimal number can have up to 16.


세상의모든계산기 님의 최근 댓글
3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은 조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요. 100÷7 = 14.285714285714285714285714285714 소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다. 2025 12.30 그럼 해가 무한히 많은지 아닌지 어떻게 아느냐? 고등학교 수학 교과과정에 나오는 행렬의 판별식(d, determinant)을 이용하면 알 수 있습니다. ㄴ 고교과정에서는 2x2 행렬만 다루던가요? 연립방정식의 계수들로 행렬을 만들고 그 행렬식(determinant)을 계산하여야 합니다. 행렬식이 d≠0 이면 유일한 해가 존재하고, d=0 이면 해가 없거나 무수히 많습니다. * 정상적인 경우 (`2y + 8z = 115`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 8 | 행렬식 값 = 1(0 - (-7)) - 1(8 - 0) = 7 - 8 = -1 (0이 아니므로 유일한 해 존재) * 문제가 된 경우 (`2y + 7z = 100`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 7 | 행렬식 값 = 1(0 - (-7)) - 1(7 - 0) = 7 - 7 = 0 (0이므로 유일한 해가 존재하지 않음) 2025 12.30 좀 더 수학적으로 말씀드리면 (AI Gemini 참고) 수학적 핵심 원리: 선형 독립성(Linear Independence) 3원 1차 연립방정식에서 미지수 x, y, z에 대한 단 하나의 해(a unique solution)가 존재하기 위한 필수 조건은 주어진 세 개의 방정식이 서로 선형 독립(linearly independent) 관계에 있어야 한다는 것입니다. * 선형 독립 (Linearly Independent): 어떤 방정식도 다른 방정식들의 조합(상수배를 더하거나 빼는 등)으로 만들어질 수 없는 상태입니다. 기하학적으로 이는 3개의 평면(각 방정식은 3D 공간의 평면을 나타냄)이 단 한 개의 점(해)에서 만나는 것을 의미합니다. * 선형 종속 (Linearly Dependent): 하나 이상의 방정식이 다른 방정식들의 조합으로 표현될 수 있는 상태입니다. 이 경우, 새로운 정보를 제공하지 못하는 '잉여' 방정식이 존재하는 것입니다. 기하학적으로 이는 3개의 평면이 하나의 선에서 만나거나(무수히 많은 해), 완전히 겹치거나, 혹은 평행하여 만나지 않는(해가 없음) 상태를 의미합니다. 질문자님의 사례는 '선형 종속'이 되어 무수히 많은 해가 발생하는 경우입니다. 2025 12.30 질문하신 연립 방정식은 미지수가 3개이고 모두 1차인 3원 1차 연립방정식입니다. 이상적으로 문제가 없다면 {x,y,z} 에 대한 좌표가 하나 나오게 됩니다. 원하는 답 {52.5, -2.5, 15} 그런데 두개 조건(식)을 그대로 두고 나머지 하나를 변형하다 보니 원하는 답이 나오지 않는 상황이 발생하였다고 질문하신 상황입니다. 3개의 조건식이 주어진 3원 1차 연립방정식은 조건을 변형해서 하나의 변수를 제거할 수 있습니다. 그러면 2개의 조건식으로 주어지는 2원 1차 연립방정식으로 변형할 수 있습니다. (알아보기 더 쉬워서 변형하는 겁니다) 변경하지 않은 조건의 식(con1) 을 이용해 하나의 y & z 1차 방정식을 유도할 수 있는데요. 나머지 방정식이 con1에서 유도된 방정식과 동일해지면 하나의 답이 구해지지 않는 것입니다. 계산기(ti-nspire)는 {x,y,z} 의 답이 하나가 아니고 무수히 많음을 c1 을 이용해서 표현해 준 것입니다. linear_independence_cond12.tns 2025 12.30