- TI nspire
[TI-nspire] amortTbl() 상환 테이블, ∑Int(), ∑Prn(), bal()
1. amortTbl()
amortTbl(NPmt,N,I,PV, [Pmt], [FV], [PpY], [CpY], [PmtAt], [roundValue]) ⇒ matrix
- 이 함수는 부채(Debt)에 대한 상환표(스케쥴)를 matrix 형태로 작성하여 화면에 표시해줍니다.
- 4개의 인자가 필수적으로 요구되며, 6개의 선택인자를 추가할 수 있습니다.
컴마를 연속으로 찍는 방법으로 선택 인자를 일부만 입력할 수 있습니다. - 나머지 변수를 이용해 Pmt(매기 납부액) 값을 찾는 것이 기본적인 기능입니다.
다만, Pmt 값을 직접 지정하여 입력하여 다른 값을 찾는 방법도 가능합니다.
1. 각 인자 설명
- NPmt : 테이블(표)에 포함될 납입 횟수. (상환액 계산과 무관, 다만 결과 표시에만 영향)
한눈에 필요한 구간만 선택하여 보기 위해 필요. - N : 납입기간
- I : 연 이자율(단위, %)
- PV : 현재 가치
- Pmt : 매회 납입액
- FV (기본값=0) : 미래 가치
- PpY (기본값=1) : 매년 납입 횟수
- CpY (기본값=1) : 매년 복리 횟수
- PmtAt (기본값=0=end) : 매납기시점 초/말
- roundValue (기본값=2) : 반올림위치
*주의 : 이자액/원금 등의 액수가 매우 작은 경우 반올림에 따른 오차가 매우 커질 수 있습니다.
2. 예시
예시1) 은행으로부터 연초에 1,000원을 대출(연이자율8%) 받았다. 10년동안, 매년(말) 동일한 금액을 갚으려 한다. 10년동안의 상환표를 작성하라.
amortTbl(10,10,8,1000)

상환 테이블은 '기수 / 이자상환액 / 원금상환액 / 대출원금잔액' 순서로 표시됩니다.
1기에는 이자상환액이 -80원이고, 원금상환액이 -69.03원입니다.
매기 납입액은 둘을 합한 금액으로 (-80)+(-69.03) = 149.03 입니다. (이 금액은 1기~10기까지 동일합니다.)
결과값을 변수로 저장한 후 m[2,2] + m[2,3] 의 명령어를 사용해 합을 계산할 수 있습니다.

※ 반올림의 영향으로 인해 10기말 원금잔액이 0원이 아니라 -0.01원이 되었습니다. roundValue 값을 올릴수록 더 정확한 결과를 얻을 수 있는 대신, 표 크기가 커져서 한눈에 표를 확인하는 것이 어려워지게 됩니다.
예시2) 은행으로부터 연초에 1,000원을 대출(연이자율 8%) 받았다. 5년동안 매년말 200원씩 갚아나갈 때, 매기의 원금 상환액은 얼마인가? 또 5년말 대출원금 잔액은 얼마인가?
amortTbl(5,5,8,1000,-200)

5년 말 원금 잔액 296원
3. 결과값의 활용
이 함수의 결과값은 특이하게 matrix (행렬) 입니다. 이 행렬은 ΣInt(), ΣPrn(), bal() 함수의 인수(input)으로 직접 이용될 수 있습니다.

2. ΣInt()
상환 원리금 중 이자 부분만 더하는 함수
ΣInt(NPmt1, NPmt2, N, I, PV ,[Pmt], [FV], [PpY], [CpY], [PmtAt], [roundValue]) ⇒ value
ΣInt(NPmt1,NPmt2,amortTable) ⇒ value
3. ΣPrn()
상환 원리금 중 원금 부분만 더하는 함수
ΣPrn(NPmt1, NPmt2, N, I, PV, [Pmt], [FV], [PpY], [CpY], [PmtAt], [roundValue]) ⇒ value
ΣPrn(NPmt1, NPmt2, amortTable) ⇒ value
4. bal()
원리금 상환 후, 원금 잔액을 구하는 함수
bal(NPmt,N,I,PV ,[Pmt], [FV], [PpY], [CpY], [PmtAt], [roundValue]) ⇒ value
bal(NPmt,amortTable) ⇒ value
댓글1
-
세상의모든계산기

ㄴ 출처 : TI-Nspire CAS Reference GuideamortTbl(12,60,10,5000,,,12,12) 명령을 해석해 보면
- 시작 ~ 12기까지만 표로 확인
- 총 60기(60회) 동안 상환 (1년은 12기로 구성되므로 5년간 상환)
- 연 이자율 10%
- 0기에 빌린 금액 = 5,000
- 매기 갚을 금액 = 계산기 니가 계산해
- 60기가 끝날때 원금 잔액 = 0 = 기본값
- 1년에 12회(=매월) 갚아나감
- 연 이자율 10%는 1년에 12회(=매월) 복리계산 해야 하는 명목이자율임
(10%/12 로 월 이자율을 결정하는 일반적인 문제와 다름에 주의)
세상의모든계산기 님의 최근 댓글
3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은 조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요. 100÷7 = 14.285714285714285714285714285714 소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다. 2025 12.30 그럼 해가 무한히 많은지 아닌지 어떻게 아느냐? 고등학교 수학 교과과정에 나오는 행렬의 판별식(d, determinant)을 이용하면 알 수 있습니다. ㄴ 고교과정에서는 2x2 행렬만 다루던가요? 연립방정식의 계수들로 행렬을 만들고 그 행렬식(determinant)을 계산하여야 합니다. 행렬식이 d≠0 이면 유일한 해가 존재하고, d=0 이면 해가 없거나 무수히 많습니다. * 정상적인 경우 (`2y + 8z = 115`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 8 | 행렬식 값 = 1(0 - (-7)) - 1(8 - 0) = 7 - 8 = -1 (0이 아니므로 유일한 해 존재) * 문제가 된 경우 (`2y + 7z = 100`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 7 | 행렬식 값 = 1(0 - (-7)) - 1(7 - 0) = 7 - 7 = 0 (0이므로 유일한 해가 존재하지 않음) 2025 12.30 좀 더 수학적으로 말씀드리면 (AI Gemini 참고) 수학적 핵심 원리: 선형 독립성(Linear Independence) 3원 1차 연립방정식에서 미지수 x, y, z에 대한 단 하나의 해(a unique solution)가 존재하기 위한 필수 조건은 주어진 세 개의 방정식이 서로 선형 독립(linearly independent) 관계에 있어야 한다는 것입니다. * 선형 독립 (Linearly Independent): 어떤 방정식도 다른 방정식들의 조합(상수배를 더하거나 빼는 등)으로 만들어질 수 없는 상태입니다. 기하학적으로 이는 3개의 평면(각 방정식은 3D 공간의 평면을 나타냄)이 단 한 개의 점(해)에서 만나는 것을 의미합니다. * 선형 종속 (Linearly Dependent): 하나 이상의 방정식이 다른 방정식들의 조합으로 표현될 수 있는 상태입니다. 이 경우, 새로운 정보를 제공하지 못하는 '잉여' 방정식이 존재하는 것입니다. 기하학적으로 이는 3개의 평면이 하나의 선에서 만나거나(무수히 많은 해), 완전히 겹치거나, 혹은 평행하여 만나지 않는(해가 없음) 상태를 의미합니다. 질문자님의 사례는 '선형 종속'이 되어 무수히 많은 해가 발생하는 경우입니다. 2025 12.30 질문하신 연립 방정식은 미지수가 3개이고 모두 1차인 3원 1차 연립방정식입니다. 이상적으로 문제가 없다면 {x,y,z} 에 대한 좌표가 하나 나오게 됩니다. 원하는 답 {52.5, -2.5, 15} 그런데 두개 조건(식)을 그대로 두고 나머지 하나를 변형하다 보니 원하는 답이 나오지 않는 상황이 발생하였다고 질문하신 상황입니다. 3개의 조건식이 주어진 3원 1차 연립방정식은 조건을 변형해서 하나의 변수를 제거할 수 있습니다. 그러면 2개의 조건식으로 주어지는 2원 1차 연립방정식으로 변형할 수 있습니다. (알아보기 더 쉬워서 변형하는 겁니다) 변경하지 않은 조건의 식(con1) 을 이용해 하나의 y & z 1차 방정식을 유도할 수 있는데요. 나머지 방정식이 con1에서 유도된 방정식과 동일해지면 하나의 답이 구해지지 않는 것입니다. 계산기(ti-nspire)는 {x,y,z} 의 답이 하나가 아니고 무수히 많음을 c1 을 이용해서 표현해 준 것입니다. linear_independence_cond12.tns 2025 12.30