- TI nspire
[TI-nspire] 통계, (모평균의) 신뢰 구간 구하는 방법(예제). Statistics - Confidence Intervals
1. 다음 샘플의 모평균에 대한 95% 신뢰구간을 추정하시오.
샘플 = {20,20,25,21,21,23,19,18,22}
문제 출처 : http://math7.tistory.com/66
2. 기본 통계값을 구함 (생략하고 3으로 뛰어도 됨)
【menu】【6】【1】【1】 : One Variable Statistics

3. 신뢰구간 Confidence Intervals 을 구함

- tInterval 프로그램은 DATA 를 직접 이용할 수도 있고, 통계값을 이용할 수도 있다.
tInterval List [, Freq [, CLevel ]]
(Data list input)
tInterval , sx, n[, CLevel]
(Summary stats input)
- 신뢰구간에 대한 요약된 결과는 stat.results 에 저장된다.
다른 통계 프로그램이 사용하는 변수명과 동일하므로 overwrite 될 수 있다.
- sx는 모편차(σx)가 아닌, 표본의 편차임에 주의하자.
- 변수명
Output variableDescriptionstat.CLower, stat.CUpperConfidence interval for an unknown population meanstat.$\overline{x}$Sample mean of the data sequence from the normal random distributionstat.MEMargin of errorstat.dfDegrees of freedomstat.σxSample standard deviationstat.nLength of the data sequence with sample mean
댓글4
-
-
세상의모든계산기
Sample DATA가 아니라, 통계치가 주어졌을 때
문제:
어느 회사에서 전자기기용 부품인 힌지를 만들고 있습니다.
생산 라인은 안정화되어, 샘플 테스트시 고장이 발생할 때까지 접힐 수 있는 횟수는 정규 분포를 이룹니다.
평균 접히는 횟수는 25만번이고, 표준편차는 2만번으로 나타났습니다.
이번 Lot 생산품중 100개의 샘플을 수거하여 조사하였을 때
제품이 고장날 때까지 접힐 수 있는 평균 횟수의 95% 신뢰구간을 구하세요.
주어진 값
- 모집단 평균 (\(\mu\)): 250,000
- 모집단 표준편차 (\(\sigma\)): 20,000
- 샘플 크기 (\(n\)): 100
- 신뢰수준 = 95% (\( Z = 1.96 \))풀이
1. 표준 오차 (Standard Error, SE) 계산:
$ SE = \dfrac{\sigma}{\sqrt{n}} = \dfrac{20,000}{\sqrt{100}} = \dfrac{20,000}{10} \approx 2,000 $2. 95% 신뢰구간 계산: \[
\text{신뢰 구간} = \bar{X} \pm z_{\alpha/2} \times SE
\]
여기서 \(\bar{X} = \mu = 250,000\)이므로,
\[
\text{신뢰 구간} = 250000 \pm 1.96 \times 2000
\]3. 결과:
$ \text{95% 신뢰구간} = (246080, 253920) $ -
1
세상의모든계산기
6: Statistics - 6: Confidence Intervals - 1: z Interval

Data Input method : Stats

(Data list input) zInterval σ,List[,Freq[,CLevel]]
(Summary stats input) zInterval σ,$ \overline{x} $,n [,CLevel]

-
세상의모든계산기
z-interval vs t-interval 차이점
통계 프로그램에서 t-interval과 z-interval은 모집단의 평균을 추정할 때 사용하는 신뢰 구간 계산 방법으로, 모집단의 분산(또는 표준편차) 정보 유무와 표본 크기에 따라 선택됩니다.
1. z-interval (Z 신뢰 구간)
- 사용 조건: 모집단의 표준편차(\(\sigma\))를 알고 있을 때 사용합니다.
- 표본 크기 요건: 일반적으로 표본 크기가 충분히 큰 경우(보통 \( n \geq 30 \))에 사용하면 정규분포에 가깝게 추정할 수 있습니다.
- 계산: 신뢰 구간의 한계는 표준 정규분포를 이용해 계산됩니다.
- 예: \( \text{z-interval} = \bar{X} \pm Z_{\alpha/2} \times \frac{\sigma}{\sqrt{n}} \)2. t-interval (T 신뢰 구간)
- 사용 조건: 모집단의 표준편차를 모르는 경우 사용하며, 표본 표준편차(\(s\))를 대신 사용합니다.
- 표본 크기 요건: 표본 크기가 작을 때(보통 \( n < 30 \)) 또는 모집단의 분산을 알 수 없을 때 주로 사용됩니다.
- 계산: 신뢰 구간의 한계는 t-분포를 이용해 계산합니다. 이때 자유도(\(n-1\))가 필요합니다.
- 예: \( \text{t-interval} = \bar{X} \pm t_{\alpha/2, \, n-1} \times \frac{s}{\sqrt{n}} \)

세상의모든계산기 님의 최근 댓글
2번 사진 3개 사진 공통적으로 구석(corner) 에 증상이 있다는 특징이 있네요. 영상 찾아보니 이 가능성이 가장 높은 듯 합니다. https://www.youtube.com/watch?v=zxRBohepzwc ㄴ Liquid Crystal Leakage (액정 누설). ㄴ 손으로 밀어내니 주변으로 밀려나네요. 그래서 점으로 보이기도 하구요. 2025 10.29 500! 의 십진수 근사값 확인 500! = 1.22013682599111006870123878542304692625357434280319284219241358838 × 10^(1134) (참값, 울프람 알파) 2025 10.29 관련 라이브러리 https://allcalc.org/56263 sgn(x) 내장된 부호 함수(signum function)와 달리, 이 함수의 sgn(0)은 0을 반환합니다. 2025 10.29 라이브러리로 사용할 수 있습니다. (제작자 추천) 1. mylib 폴더에 넣기 2. Actions ➡️ library ➡️ refresh libraries 실행 하기 2025 10.29 ChatGPT-5 기호(÷, /, :) 자체는 의미적으로 같은 “나눗셈”을 뜻하지만, 문맥(사람이 쓰는 수학 vs 컴퓨터/프로그래밍)에 따라 해석 우선순위가 달라질 수 있습니다. 🔹 1️⃣ 전통 수학 표기 — ÷, /, : 수학 교과서, 논문, 일반 문서 등에서는 셋 다 의미적으로 “나누기”로 간주됩니다. 즉, 48÷2(9+3), 48/2(9+3), 48:2(9+3) 은 같은 의미로 받아들여야 합니다. 모두 사람의 수학 관행적 해석이 적용되어 48 ÷ 2 × (9+3) = 288 로 처리되죠. 즉, 기호가 바뀌어도 결과는 바뀌지 않습니다. 🔹 2️⃣ 컴퓨터·프로그래밍 문맥에서 / 사용 시 컴퓨터는 “생략된 곱셈(implicit multiplication)”을 따로 구분하지 못합니다. 따라서 다음 두 식은 완전히 다르게 인식됩니다. 표현 파이썬 등에서 해석 결과 48 / 2*(9+3) ((48 / 2) * (9+3)) 288 48 / 2(9+3) ❌ 문법 오류 (생략된 곱셈 인식 불가) — 즉, 컴퓨터 언어에서는 생략된 곱셈이 허용되지 않기 때문에, /는 반드시 명시적 *와 함께 써야 합니다. 🔹 3️⃣ “:” 기호의 경우 현대 수학에서는 “비율”을 나타내는 기호로 쓰입니다. a:b = \frac{a}{b} 따라서 (27 : 3(1+2)3) 같은 표현은 모호하거나 비표준적으로 간주됩니다. 대부분의 경우 계산기로는 입력 자체가 불가능합니다. ✅ 정리 기호 의미 결과 변화 주로 쓰이는 문맥 ÷ 나누기 없음 초중등 수학, 일반 표기 / 나누기 없음 (단, 프로그래밍에서는 생략 곱 불허) 수학/컴퓨터 : 비율 (또는 나누기 의미로 혼용) 보통 계산식에서는 사용 안 함 비, 비율 표기 🔹 결론 48 ÷ 2(9+3), 48/2(9+3), 48:2(9+3) 는 “수학적 의미”로는 동일하게 81로 해석됩니다. 하지만 프로그래밍이나 수식 파서(context) 에서는 /만 유효하고, 생략된 곱은 허용되지 않으며, :는 아예 다른 의미(비율)로 인식됩니다. 2025 10.28