[PDF] Nspire CAS en MAT265 : fonctions particulièrement utiles, Michel Beaudin

Nspire CAS en MAT265 : fonctions particulièrement utiles = 유용한 함수들
출처 :
https://ena.etsmtl.ca/pluginfile.php/1596240/mod_resource/content/5/Fonctions%20pour%20Nspire%20CAS_Mat%20265_A-14.pdf
tns 라이브러리 :
https://cours.etsmtl.ca/seg/mbeaudin/ETS_specfunc.tns
https://cours.etsmtl.ca/seg/mbeaudin/documents/Kit_ETS_MB.tns
https://cours.etsmtl.ca/seg/mbeaudin/Kit_ETS_FH.tns
- 안타깝게도 불어입니다.
- 수식/그림 충분히 있으니, 알아서 해석하셔야 합니다.
- 라이브러리 파일은 링크한 pdf 파일의 링크에 있습니다만, 이 글 첨부파일로 넣어두겠습니다.
Trois fonctions importantes de la librairie ETS_specfunc
| Nom de la fonction Description | Description |
| laplace(f) |
"주어진 표현 \( f \)의 라플라스 변환을 구하세요. 사용해야 하는 변수는 반드시 \( t \)이어야 하며, 단위 계단 함수에는 \( u(t) \), 디랙 델타 함수에는 \( \delta(t) \)를 사용하세요. 답은 \( s \)에 대한 표현이어야 합니다." |
| ilaplace(F) | "변수 s인 표현 F의 라플라스 역변환을 구하세요. 답은 ttt에 대한 표현이어야 합니다." |
| solved(edo, {y(t), co_ini}) | "라플라스 변환을 사용하여 미분 방정식(edo)을 풀어라. 이 방정식은 미지 함수 y(t)를 포함하며 초기 조건 $ co_{\text{ini}} $이 주어져 있다." |
| Nom de la fonction | Description |
| cir_rc(R, C, E, vo) cir_rl(R, L, E, io) |
"커패시터 \( C \)의 양단에서 전압 \( v(t) \)를 구하세요. RC 회로에서 소스 \( E(t) \)와 초기 전압 \( v_0 \)가 주어졌습니다. 따라서 다음 미분 방정식을 풉니다: RL 회로에서 전류 \( i(t) \)를 구하세요. 소스 \( E(t) \)와 초기 전류 \( i_0 \)가 주어졌습니다. 따라서 다음 미분 방정식을 풉니다: |
| solpart(y1, y2, r, x) |
주어진 문장의 한국어 번역은 다음과 같습니다: "다음 미분 방정식에 대한 특수 해를 구하세요: |
| convolap(x, h) |
"신호 \( x(t) \)와 \( h(t) \)의 컨볼루션." |
| ressort(m, b, k, f, yo, vo) |
주어진 문장은 다음과 같이 한국어로 번역할 수 있습니다: "다음 미분 방정식을 풀어라: |
| circuit_rlc(R, L, C, E, vo, io) |
"RLC 회로에서 커패시터 \( C \)의 양단에서 전압 \( v(t) \)를 구하세요. 소스 \( E(t) \)와 초기 전압 \( v_0 \), 초기 전류 \( i_0 \)가 주어졌습니다. 따라서 다음 미분 방정식을 풉니다: |
| u_to_piece(f, x) |
"변수 \( x \)로 주어진 표현 \( f \)를 정의가 다음과 같이 주어졌을 때, 구간별 함수로 변환하세요: 1. \( u(t) := \dfrac{\text{sign}(t) +1}{2} \) 입니다. |
| taylor_ode1(r, x, y, xo, yo, n) |
"1차 ODE에 대한 \( n \)차 테일러 다항식, |
| taylor_ode2(r, x, y, v, xo, yo, vo, n) |
"2차 ODE에 대한 \( n \)차 테일러 다항식, \( y'' = r(x, y, y'), y(x_0) = y_0, y'(x_0) = v_0 \), . |
| fourier(f, t, t1, t2, n) |
"주기 신호 \( f \)의 \( n \)차 부분합으로 단순화됩니다. 이 신호는 변수 \( t \)를 가지며, 주기는 \( t_2 - t_1 \)입니다." |
| de_syst(A, g, to, yo) |
"1차 시스템 |
세상의모든계산기 님의 최근 댓글
참고 - [공학용 계산기] 정적분 계산 속도 벤치마크 비교 https://allcalc.org/9677 2025 12.11 다른 계산기의 경우와 비교 1. TI-nspire CAS ㄴ CAS 계산기는 가능한 경우 부정적분을 먼저하고, 그 값에 구간을 대입해 최종값을 얻습니다. ㄴ 부정적분이 불가능할 때는 수치해석적 방법을 시도합니다. 2. CASIO fx-991 ES Plus ㄴ CASIO 계산기의 경우, 적분할 함수에 따라 시간이 달라지는 것으로 알고 있는데, 정밀도를 확보할 별도의 알고리즘을 채택하고 있는 것이 아닐까 생각되네요. 2025 12.11 일반 계산기는 보통 리셋기능이 따로 없기 때문에, 다른 요인에 영향을 받을 가능성은 없어 보이구요. '원래는 잘 되었는데, 지금은 설정 값이 날아간다'면 메모리 값을 유지할만큼 배터리가 꾸준하게 공급되지 않기 때문일 가능성이 높다고 봐야겠습니다. - 태양광이 있을 때는 계산은 가능하지만, 서랍등에 넣으면 배터리가 없어서 리셋 https://blog.naver.com/potatoyamyam/223053309120 (교체 사진 참조) 1. 배터리 준비: * 다이소 등에서 LR54 (LR1130) 배터리를 구매합니다. (보통 4개 들이 1,000원에 판매됩니다. LR44와 높이가 다르니 혼동하시면 안됩니다.) 2. 준비물: * 작은 십자드라이버 (계산기 뒷면 나사용. 이것도 없으시면 다이소에서...) 3. 커버 분해: * 계산기 뒷면의 나사를 풀고, 머리 부분(윗부분)의 커버를 조심스럽게 분해합니다. (참고해주신 블로그 사진을 보시면 이해가 빠르실 겁니다.) 4. 배터리 교체: * 기존 배터리를 빼냅니다. * 새 LR54 배터리의 '+'극 방향을 정확히 확인하여 제자리에 넣어줍니다. (대부분의 경우 '+'극이 위로 보이도록 넣습니다.) 5. 조립: * 커버를 다시 닫고 나사를 조여줍니다. * 블로그 사진을 보니 배터리 연결선 등이 눌려서 씹혀 있네요. 원래 씹히도록 설계를 안하는데, 원래 그렇게 만들어 놓은 건지? 모르겠네요. 여튼 씹히면 단선될 가능성이 있으니, 잘 보시고 플라스틱 틈새 등으로 적절히 배치해서 안씹히게 하는 것이 좋습니다. 6. TAX 재설정: * 계산기의 전원을 켜고 TAX 요율을 10%로 다시 설정합니다. 2025 12.10 TI-nspire 입력 방법 solve({x+a+b=5,x)|a=1 and b=2 2025 12.01 질문하실 때는 항상 계산기 모델명을 정확하게 적으셔야 합니다. 2025 12.01