- TI nspire
[TI-nspire] 그래프 - 미분 방정식 Diff Eq
1. 그래프 모드 - 미분 방정식 Diff Eq
- 미분 방정식 그래프 모드에서는 (대수적으로 시스템을 특징짓는) 미분 방정식을 풀지 않고도, 역동적인 과정(변화)를 탐색할 수 있습니다.
- 새로운(OS Ver 3.0에서 업데이트됨) 2D 그래프 유형인 미분 방정식은 미분 방정식의 해를 근사화하는 슬로프(Slope) 필드와 방향(Direction) 필드의 플롯을 제공합니다. 사용자는 Euler와 Runge-Kutta 해법 중에서 선택할 수 있습니다.
- (여러) 초기 조건에 따라 특정 솔루션을 시각화 할 수 있습니다. 초기 조건은 좌표 평면에서 드래그 할 수 있으며 특정 솔루션이 자동으로 업데이트됩니다.
- 그래프 유형 미분 방정식은 동일한 좌표계에서 다른 2D 그래프 유형과 결합 될 수 있습니다.
(TI-nspire OS Ver3 Release Note 에서 발췌)

2. 옵션

- Solution Method(수치해석 방법) :
Euler / Runge-Kutta 중 선택
- Iterations between plot step(Euler 방법에서 계산의 정확도 결정) : 1 ~ 정수값
Error Tolerance(RK방법에서 오차 허용) : 허용 범위 ≥ 1x10^-14
- Field(장) :
None - 표시하지 않음
Slope - 경사
Direction - 두 미분 방정식 사이의 관계를 나타내는 기울기 방향
- Axes :
Default(x and y)
Custom - 2개이상 미분 방정식일 때 사용
The available entries are :- x 독립변수
- y1 and y2 (or any other identifiers defined in the editor)
- y1’ and y2’ (or any other derivatives defined in the editor)
- Plot Start :
솔루션 플롯이 시작되는 독립 변수값을 결정 - Plot End :
솔루션 플롯이 끝나는 독립 변수값을 결정 - Plot Step :
값이 표시될 독립변수 값의 증가량을 결정
- Field Resolution :
Field 표시할 열의 갯수 결정
- Direction Field at x= :
방향 필드가 그려지는 독립변수의 값을 설정
3. 예시 y'=2x, y(0)=1
1. y'=2x, y(0)=1 인 미분 방정식을 이용해 그래프를 그려 보겠습니다.
x는 그냥 x로,
y는 y1 또는 y2로 입력합니다. (좌변, 우변 모두에서)

2. 미분 방정식을 풀면 y=x^2 + 1 이 됩니다.
이 그래프를 겹쳐 확인해 보면 얼추 같아 보입니다.

3. 하지만 확대해 보면... 원래 그래프와는 오차가 있습니다.

f1(0.5) = 0.5^2+1 = 1.25
4. 이를 해결하기 위해 Diff Eq 엔트리 옵션에서 Iterations Between Plot Step 을 기본값인 1에서 10으로 올려 보았습니다.

오차가 줄어들었습니다. 그래도 점 찍힌 모양새가 원 그래프와 일치하지는 않는 것 같습니다.
Iteration 횟수를 늘리는 대신 Plot Step 을 줄여도 오차는 줄어듭니다.
5. Plot Step 을 줄이면 점 찍히는 간격이 줄어 촘촘해지는 것은 확실한데,
Plot Start / End 는 정확히 어떤 역할을 하는지 잘 모르겠습니다.
6. 초기 조건이 여럿인 경우 그래프도 여럿이 출력됩니다.

4. 주의
초기 조건값의 선택에 따라 plot 그려지는게 달라질 수 있습니다. 초기 조건값을 만족하는 그래프plot이 딱 하나일 수도 있지만, 여러개일 가능성도 있기 때문입니다.
초기 조건값을 여러개 넣는 경우, (desolve 함수와 달리) 모든 조건값을 동시에 만족하는 그래프를 찾는 것이 아니고, 각각의 조건값을 만족하는 모든 그래프를 모조리 찾기 때문에, 조건값은 가급적 하나만 넣는 것이 바람직한 것 같습니다.
그리고 slope(기울기)가 0 또는 ∞ 이 되는 점을 초기값으로 주는 것은 바람직하지 않은 것 같기도 한데, 이것 역시 케이스바이케이스입니다.







세상의모든계산기 님의 최근 댓글
3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은 조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요. 100÷7 = 14.285714285714285714285714285714 소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다. 2025 12.30 그럼 해가 무한히 많은지 아닌지 어떻게 아느냐? 고등학교 수학 교과과정에 나오는 행렬의 판별식(d, determinant)을 이용하면 알 수 있습니다. ㄴ 고교과정에서는 2x2 행렬만 다루던가요? 연립방정식의 계수들로 행렬을 만들고 그 행렬식(determinant)을 계산하여야 합니다. 행렬식이 d≠0 이면 유일한 해가 존재하고, d=0 이면 해가 없거나 무수히 많습니다. * 정상적인 경우 (`2y + 8z = 115`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 8 | 행렬식 값 = 1(0 - (-7)) - 1(8 - 0) = 7 - 8 = -1 (0이 아니므로 유일한 해 존재) * 문제가 된 경우 (`2y + 7z = 100`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 7 | 행렬식 값 = 1(0 - (-7)) - 1(7 - 0) = 7 - 7 = 0 (0이므로 유일한 해가 존재하지 않음) 2025 12.30 좀 더 수학적으로 말씀드리면 (AI Gemini 참고) 수학적 핵심 원리: 선형 독립성(Linear Independence) 3원 1차 연립방정식에서 미지수 x, y, z에 대한 단 하나의 해(a unique solution)가 존재하기 위한 필수 조건은 주어진 세 개의 방정식이 서로 선형 독립(linearly independent) 관계에 있어야 한다는 것입니다. * 선형 독립 (Linearly Independent): 어떤 방정식도 다른 방정식들의 조합(상수배를 더하거나 빼는 등)으로 만들어질 수 없는 상태입니다. 기하학적으로 이는 3개의 평면(각 방정식은 3D 공간의 평면을 나타냄)이 단 한 개의 점(해)에서 만나는 것을 의미합니다. * 선형 종속 (Linearly Dependent): 하나 이상의 방정식이 다른 방정식들의 조합으로 표현될 수 있는 상태입니다. 이 경우, 새로운 정보를 제공하지 못하는 '잉여' 방정식이 존재하는 것입니다. 기하학적으로 이는 3개의 평면이 하나의 선에서 만나거나(무수히 많은 해), 완전히 겹치거나, 혹은 평행하여 만나지 않는(해가 없음) 상태를 의미합니다. 질문자님의 사례는 '선형 종속'이 되어 무수히 많은 해가 발생하는 경우입니다. 2025 12.30 질문하신 연립 방정식은 미지수가 3개이고 모두 1차인 3원 1차 연립방정식입니다. 이상적으로 문제가 없다면 {x,y,z} 에 대한 좌표가 하나 나오게 됩니다. 원하는 답 {52.5, -2.5, 15} 그런데 두개 조건(식)을 그대로 두고 나머지 하나를 변형하다 보니 원하는 답이 나오지 않는 상황이 발생하였다고 질문하신 상황입니다. 3개의 조건식이 주어진 3원 1차 연립방정식은 조건을 변형해서 하나의 변수를 제거할 수 있습니다. 그러면 2개의 조건식으로 주어지는 2원 1차 연립방정식으로 변형할 수 있습니다. (알아보기 더 쉬워서 변형하는 겁니다) 변경하지 않은 조건의 식(con1) 을 이용해 하나의 y & z 1차 방정식을 유도할 수 있는데요. 나머지 방정식이 con1에서 유도된 방정식과 동일해지면 하나의 답이 구해지지 않는 것입니다. 계산기(ti-nspire)는 {x,y,z} 의 답이 하나가 아니고 무수히 많음을 c1 을 이용해서 표현해 준 것입니다. linear_independence_cond12.tns 2025 12.30