- TI nspire
[TI-nspire] 그래프 - 미분 방정식 Diff Eq
1. 그래프 모드 - 미분 방정식 Diff Eq
- 미분 방정식 그래프 모드에서는 (대수적으로 시스템을 특징짓는) 미분 방정식을 풀지 않고도, 역동적인 과정(변화)를 탐색할 수 있습니다.
- 새로운(OS Ver 3.0에서 업데이트됨) 2D 그래프 유형인 미분 방정식은 미분 방정식의 해를 근사화하는 슬로프(Slope) 필드와 방향(Direction) 필드의 플롯을 제공합니다. 사용자는 Euler와 Runge-Kutta 해법 중에서 선택할 수 있습니다.
- (여러) 초기 조건에 따라 특정 솔루션을 시각화 할 수 있습니다. 초기 조건은 좌표 평면에서 드래그 할 수 있으며 특정 솔루션이 자동으로 업데이트됩니다.
- 그래프 유형 미분 방정식은 동일한 좌표계에서 다른 2D 그래프 유형과 결합 될 수 있습니다.
(TI-nspire OS Ver3 Release Note 에서 발췌)
2. 옵션
- Solution Method(수치해석 방법) :
Euler / Runge-Kutta 중 선택
- Iterations between plot step(Euler 방법에서 계산의 정확도 결정) : 1 ~ 정수값
Error Tolerance(RK방법에서 오차 허용) : 허용 범위 ≥ 1x10^-14
- Field(장) :
None - 표시하지 않음
Slope - 경사
Direction - 두 미분 방정식 사이의 관계를 나타내는 기울기 방향
- Axes :
Default(x and y)
Custom - 2개이상 미분 방정식일 때 사용
The available entries are :- x 독립변수
- y1 and y2 (or any other identifiers defined in the editor)
- y1’ and y2’ (or any other derivatives defined in the editor)
- Plot Start :
솔루션 플롯이 시작되는 독립 변수값을 결정 - Plot End :
솔루션 플롯이 끝나는 독립 변수값을 결정 - Plot Step :
값이 표시될 독립변수 값의 증가량을 결정
- Field Resolution :
Field 표시할 열의 갯수 결정
- Direction Field at x= :
방향 필드가 그려지는 독립변수의 값을 설정
3. 예시 y'=2x, y(0)=1
1. y'=2x, y(0)=1 인 미분 방정식을 이용해 그래프를 그려 보겠습니다.
x는 그냥 x로,
y는 y1 또는 y2로 입력합니다. (좌변, 우변 모두에서)
2. 미분 방정식을 풀면 y=x^2 + 1 이 됩니다.
이 그래프를 겹쳐 확인해 보면 얼추 같아 보입니다.
3. 하지만 확대해 보면... 원래 그래프와는 오차가 있습니다.
f1(0.5) = 0.5^2+1 = 1.25
4. 이를 해결하기 위해 Diff Eq 엔트리 옵션에서 Iterations Between Plot Step 을 기본값인 1에서 10으로 올려 보았습니다.
오차가 줄어들었습니다. 그래도 점 찍힌 모양새가 원 그래프와 일치하지는 않는 것 같습니다.
Iteration 횟수를 늘리는 대신 Plot Step 을 줄여도 오차는 줄어듭니다.
5. Plot Step 을 줄이면 점 찍히는 간격이 줄어 촘촘해지는 것은 확실한데,
Plot Start / End 는 정확히 어떤 역할을 하는지 잘 모르겠습니다.
6. 초기 조건이 여럿인 경우 그래프도 여럿이 출력됩니다.
4. 주의
초기 조건값의 선택에 따라 plot 그려지는게 달라질 수 있습니다. 초기 조건값을 만족하는 그래프plot이 딱 하나일 수도 있지만, 여러개일 가능성도 있기 때문입니다.
초기 조건값을 여러개 넣는 경우, (desolve 함수와 달리) 모든 조건값을 동시에 만족하는 그래프를 찾는 것이 아니고, 각각의 조건값을 만족하는 모든 그래프를 모조리 찾기 때문에, 조건값은 가급적 하나만 넣는 것이 바람직한 것 같습니다.
그리고 slope(기울기)가 0 또는 ∞ 이 되는 점을 초기값으로 주는 것은 바람직하지 않은 것 같기도 한데, 이것 역시 케이스바이케이스입니다.
세상의모든계산기 님의 최근 댓글
낮에 TV에서 영화 '말모이' 해주더라구요. 그래서 한번 물어 봤습니다. 2025 10.10 마지막 발언이 마지막 힌트이자 문제의 핵심이군요. 처음 들은 달이 8월이었다면 (15일인지 17일인지 확신할 수 없어서) 마지막 대사를 할 수 없지만, 처음 들은 달이 7월이었다면 (선택지가 16일 하나라서 확신이 가능하므로) 마지막 대사를 할 수 있다. 대사를 했으니 7월이다. 이제 이해되었습니다. 지금 보니까 이해가 되는데, 당시에는 왜 이해가 안됐을까요? 세가지 전제 하에 문제를 풀면 A는 마지막 대화 2줄만으로 C의 생일을 알 수 없어야 정상인데, 무슨 이유에서인지 "그럼 나도 앎!"이라고 선언해 버립니다. 알게 된 이유를 대화 속에서 찾을 수는 없습니다. 이 편견에 사로잡혀 빠져나오지 못하고 다른 길로 계속 샜나봅니다. 2025 10.09 (장*훈)님 (+10,000원) 계좌 후원(2025/10/09) 감사 드립니다. 2025 10.09 원래 식이 풀어진 상태에서는 두번째 인수 v가 분모, 분자에 섞여 있어서 계산기가 처리하지 못하는 듯 합니다. 이 때는 위에서와 반대로 분모 부분만 다른 문자(w)로 치환한 다음 completesquare(,v^2) 처리를 하면 일부분은 묶이는 듯 합니다. 하지만 여기서 처음 모양으로 더 이상 진행되진 않네요. 2025 10.08 전체 식에서 일부분(분모, 루트 내부)만 적용할 수는 없습니다. 번거롭더라도 해당 부분만 따로 끄집어 내서 적용하셔야 합니다. https://allcalc.org/30694#comment_30704 2025 10.08