- TI nspire
[TI-nspire] amortTbl() 상환 테이블, ∑Int(), ∑Prn(), bal()
1. amortTbl()
amortTbl(NPmt,N,I,PV, [Pmt], [FV], [PpY], [CpY], [PmtAt], [roundValue]) ⇒ matrix
- 이 함수는 부채(Debt)에 대한 상환표(스케쥴)를 matrix 형태로 작성하여 화면에 표시해줍니다.
- 4개의 인자가 필수적으로 요구되며, 6개의 선택인자를 추가할 수 있습니다.
컴마를 연속으로 찍는 방법으로 선택 인자를 일부만 입력할 수 있습니다. - 나머지 변수를 이용해 Pmt(매기 납부액) 값을 찾는 것이 기본적인 기능입니다.
다만, Pmt 값을 직접 지정하여 입력하여 다른 값을 찾는 방법도 가능합니다.
1. 각 인자 설명
- NPmt : 테이블(표)에 포함될 납입 횟수. (상환액 계산과 무관, 다만 결과 표시에만 영향)
한눈에 필요한 구간만 선택하여 보기 위해 필요. - N : 납입기간
- I : 연 이자율(단위, %)
- PV : 현재 가치
- Pmt : 매회 납입액
- FV (기본값=0) : 미래 가치
- PpY (기본값=1) : 매년 납입 횟수
- CpY (기본값=1) : 매년 복리 횟수
- PmtAt (기본값=0=end) : 매납기시점 초/말
- roundValue (기본값=2) : 반올림위치
*주의 : 이자액/원금 등의 액수가 매우 작은 경우 반올림에 따른 오차가 매우 커질 수 있습니다.
2. 예시
예시1) 은행으로부터 연초에 1,000원을 대출(연이자율8%) 받았다. 10년동안, 매년(말) 동일한 금액을 갚으려 한다. 10년동안의 상환표를 작성하라.
amortTbl(10,10,8,1000)

상환 테이블은 '기수 / 이자상환액 / 원금상환액 / 대출원금잔액' 순서로 표시됩니다.
1기에는 이자상환액이 -80원이고, 원금상환액이 -69.03원입니다.
매기 납입액은 둘을 합한 금액으로 (-80)+(-69.03) = 149.03 입니다. (이 금액은 1기~10기까지 동일합니다.)
결과값을 변수로 저장한 후 m[2,2] + m[2,3] 의 명령어를 사용해 합을 계산할 수 있습니다.

※ 반올림의 영향으로 인해 10기말 원금잔액이 0원이 아니라 -0.01원이 되었습니다. roundValue 값을 올릴수록 더 정확한 결과를 얻을 수 있는 대신, 표 크기가 커져서 한눈에 표를 확인하는 것이 어려워지게 됩니다.
예시2) 은행으로부터 연초에 1,000원을 대출(연이자율 8%) 받았다. 5년동안 매년말 200원씩 갚아나갈 때, 매기의 원금 상환액은 얼마인가? 또 5년말 대출원금 잔액은 얼마인가?
amortTbl(5,5,8,1000,-200)

5년 말 원금 잔액 296원
3. 결과값의 활용
이 함수의 결과값은 특이하게 matrix (행렬) 입니다. 이 행렬은 ΣInt(), ΣPrn(), bal() 함수의 인수(input)으로 직접 이용될 수 있습니다.

2. ΣInt()
상환 원리금 중 이자 부분만 더하는 함수
ΣInt(NPmt1, NPmt2, N, I, PV ,[Pmt], [FV], [PpY], [CpY], [PmtAt], [roundValue]) ⇒ value
ΣInt(NPmt1,NPmt2,amortTable) ⇒ value
3. ΣPrn()
상환 원리금 중 원금 부분만 더하는 함수
ΣPrn(NPmt1, NPmt2, N, I, PV, [Pmt], [FV], [PpY], [CpY], [PmtAt], [roundValue]) ⇒ value
ΣPrn(NPmt1, NPmt2, amortTable) ⇒ value
4. bal()
원리금 상환 후, 원금 잔액을 구하는 함수
bal(NPmt,N,I,PV ,[Pmt], [FV], [PpY], [CpY], [PmtAt], [roundValue]) ⇒ value
bal(NPmt,amortTable) ⇒ value
댓글1
-
세상의모든계산기

ㄴ 출처 : TI-Nspire CAS Reference GuideamortTbl(12,60,10,5000,,,12,12) 명령을 해석해 보면
- 시작 ~ 12기까지만 표로 확인
- 총 60기(60회) 동안 상환 (1년은 12기로 구성되므로 5년간 상환)
- 연 이자율 10%
- 0기에 빌린 금액 = 5,000
- 매기 갚을 금액 = 계산기 니가 계산해
- 60기가 끝날때 원금 잔액 = 0 = 기본값
- 1년에 12회(=매월) 갚아나감
- 연 이자율 10%는 1년에 12회(=매월) 복리계산 해야 하는 명목이자율임
(10%/12 로 월 이자율을 결정하는 일반적인 문제와 다름에 주의)
세상의모든계산기 님의 최근 댓글
은행앱 통합하면서 없어졌나보네요. ㄴ 비슷한 기능 찾으시는 분은 : 스마트 금융 계산기 검색해 보세요. https://play.google.com/store/apps/details?id=com.moneta.android.monetacalculator 2026 01.25 Ctrl+Z 를 이용해 뒤로 돌아기기 Undo 기능이 있는지 살펴보세요. 2026 01.23 쌀집계산기로 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 https://allcalc.org/56739 3. 'x' 값 구하기 계산기 조작법 목표: x = Dx / D = [(c×e) - (b×f)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 1 * 1 M+ : 메모리(M)에 1를 더합니다. (현재 M = 1) -0.1 * -0.2 M- : 메모리(M)에서 0.02를 뺍니다. (현재 M = 0.98 = 0.98) 이로써 메모리(MR)에는 분모 0.98가 저장됩니다. 2단계: 분자 Dx 계산 후 나누기 78000 * 1 : 78000를 계산합니다. = : GT에 더합니다. -0.1 * 200000 : -20000를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. // sign changer 버튼 사용 GT : GT를 불러옵니다. GT는 98000 (분자 Dx) 값입니다. ÷ MR = : 위 결과(98000)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 x값 100,000를 구합니다. 4. 'y' 값 구하기 계산기 조작법 목표: y = Dy / D = [(a×f) - (c×d)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 'x'에서와 분모는 동일하고 메모리(MR)에 0.98가 저장되어 있으므로 패스합니다. 2단계: 분자 Dy 계산 후 나누기 GT ± = : GT를 불러오고 부호를 뒤집어 GT에 더합니다. GT가 0으로 리셋됩니다. 【AC】를 누르면 M은 유지되고 GT만 리셋되는 계산기도 있으니 확인해 보세요. 1 * 200000 : 200000를 계산합니다. = : GT에 더합니다. 78000 * -0.2 : -15600를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. GT : GT를 불러옵니다. 215600 (분자 Dy) 값입니다. ÷ MR = : 위 결과(215600)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 y값 220,000를 구합니다. x, y 값을 이용해 최종 결과를 구합니다. 2026 01.18 크레이머 = 크레머 = 크라메르 공식 = Cramer's Rule https://allcalc.org/8985 2026 01.18 부호 변경, Sign Changer 버튼 https://allcalc.org/52092 2026 01.18