[PDF] Nspire CAS en MAT265 : fonctions particulièrement utiles, Michel Beaudin

Nspire CAS en MAT265 : fonctions particulièrement utiles = 유용한 함수들
출처 :
https://ena.etsmtl.ca/pluginfile.php/1596240/mod_resource/content/5/Fonctions%20pour%20Nspire%20CAS_Mat%20265_A-14.pdf
tns 라이브러리 :
https://cours.etsmtl.ca/seg/mbeaudin/ETS_specfunc.tns
https://cours.etsmtl.ca/seg/mbeaudin/documents/Kit_ETS_MB.tns
https://cours.etsmtl.ca/seg/mbeaudin/Kit_ETS_FH.tns
- 안타깝게도 불어입니다.
- 수식/그림 충분히 있으니, 알아서 해석하셔야 합니다.
- 라이브러리 파일은 링크한 pdf 파일의 링크에 있습니다만, 이 글 첨부파일로 넣어두겠습니다.
Trois fonctions importantes de la librairie ETS_specfunc
| Nom de la fonction Description | Description |
| laplace(f) |
"주어진 표현 \( f \)의 라플라스 변환을 구하세요. 사용해야 하는 변수는 반드시 \( t \)이어야 하며, 단위 계단 함수에는 \( u(t) \), 디랙 델타 함수에는 \( \delta(t) \)를 사용하세요. 답은 \( s \)에 대한 표현이어야 합니다." |
| ilaplace(F) | "변수 s인 표현 F의 라플라스 역변환을 구하세요. 답은 ttt에 대한 표현이어야 합니다." |
| solved(edo, {y(t), co_ini}) | "라플라스 변환을 사용하여 미분 방정식(edo)을 풀어라. 이 방정식은 미지 함수 y(t)를 포함하며 초기 조건 $ co_{\text{ini}} $이 주어져 있다." |
| Nom de la fonction | Description |
| cir_rc(R, C, E, vo) cir_rl(R, L, E, io) |
"커패시터 \( C \)의 양단에서 전압 \( v(t) \)를 구하세요. RC 회로에서 소스 \( E(t) \)와 초기 전압 \( v_0 \)가 주어졌습니다. 따라서 다음 미분 방정식을 풉니다: RL 회로에서 전류 \( i(t) \)를 구하세요. 소스 \( E(t) \)와 초기 전류 \( i_0 \)가 주어졌습니다. 따라서 다음 미분 방정식을 풉니다: |
| solpart(y1, y2, r, x) |
주어진 문장의 한국어 번역은 다음과 같습니다: "다음 미분 방정식에 대한 특수 해를 구하세요: |
| convolap(x, h) |
"신호 \( x(t) \)와 \( h(t) \)의 컨볼루션." |
| ressort(m, b, k, f, yo, vo) |
주어진 문장은 다음과 같이 한국어로 번역할 수 있습니다: "다음 미분 방정식을 풀어라: |
| circuit_rlc(R, L, C, E, vo, io) |
"RLC 회로에서 커패시터 \( C \)의 양단에서 전압 \( v(t) \)를 구하세요. 소스 \( E(t) \)와 초기 전압 \( v_0 \), 초기 전류 \( i_0 \)가 주어졌습니다. 따라서 다음 미분 방정식을 풉니다: |
| u_to_piece(f, x) |
"변수 \( x \)로 주어진 표현 \( f \)를 정의가 다음과 같이 주어졌을 때, 구간별 함수로 변환하세요: 1. \( u(t) := \dfrac{\text{sign}(t) +1}{2} \) 입니다. |
| taylor_ode1(r, x, y, xo, yo, n) |
"1차 ODE에 대한 \( n \)차 테일러 다항식, |
| taylor_ode2(r, x, y, v, xo, yo, vo, n) |
"2차 ODE에 대한 \( n \)차 테일러 다항식, \( y'' = r(x, y, y'), y(x_0) = y_0, y'(x_0) = v_0 \), . |
| fourier(f, t, t1, t2, n) |
"주기 신호 \( f \)의 \( n \)차 부분합으로 단순화됩니다. 이 신호는 변수 \( t \)를 가지며, 주기는 \( t_2 - t_1 \)입니다." |
| de_syst(A, g, to, yo) |
"1차 시스템 |
세상의모든계산기 님의 최근 댓글
은행앱 통합하면서 없어졌나보네요. ㄴ 비슷한 기능 찾으시는 분은 : 스마트 금융 계산기 검색해 보세요. https://play.google.com/store/apps/details?id=com.moneta.android.monetacalculator 2026 01.25 Ctrl+Z 를 이용해 뒤로 돌아기기 Undo 기능이 있는지 살펴보세요. 2026 01.23 쌀집계산기로 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 https://allcalc.org/56739 3. 'x' 값 구하기 계산기 조작법 목표: x = Dx / D = [(c×e) - (b×f)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 1 * 1 M+ : 메모리(M)에 1를 더합니다. (현재 M = 1) -0.1 * -0.2 M- : 메모리(M)에서 0.02를 뺍니다. (현재 M = 0.98 = 0.98) 이로써 메모리(MR)에는 분모 0.98가 저장됩니다. 2단계: 분자 Dx 계산 후 나누기 78000 * 1 : 78000를 계산합니다. = : GT에 더합니다. -0.1 * 200000 : -20000를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. // sign changer 버튼 사용 GT : GT를 불러옵니다. GT는 98000 (분자 Dx) 값입니다. ÷ MR = : 위 결과(98000)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 x값 100,000를 구합니다. 4. 'y' 값 구하기 계산기 조작법 목표: y = Dy / D = [(a×f) - (c×d)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 'x'에서와 분모는 동일하고 메모리(MR)에 0.98가 저장되어 있으므로 패스합니다. 2단계: 분자 Dy 계산 후 나누기 GT ± = : GT를 불러오고 부호를 뒤집어 GT에 더합니다. GT가 0으로 리셋됩니다. 【AC】를 누르면 M은 유지되고 GT만 리셋되는 계산기도 있으니 확인해 보세요. 1 * 200000 : 200000를 계산합니다. = : GT에 더합니다. 78000 * -0.2 : -15600를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. GT : GT를 불러옵니다. 215600 (분자 Dy) 값입니다. ÷ MR = : 위 결과(215600)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 y값 220,000를 구합니다. x, y 값을 이용해 최종 결과를 구합니다. 2026 01.18 크레이머 = 크레머 = 크라메르 공식 = Cramer's Rule https://allcalc.org/8985 2026 01.18 부호 변경, Sign Changer 버튼 https://allcalc.org/52092 2026 01.18