- TI nspire
[TI-nspire] 행렬 eigVL 고유값, eigVC 고유벡터 구하기
1. 자동으로 고유값 & 고유벡터 찾는 방법
고유값 함수(eigVL())와, 고유벡터(eigVC()) 함수는 [TI-nspire]에 내장되어 있으므로, 손쉽게 구할 수 있습니다.
- 행렬 a = 라고 하면

- eigVl()로 구한 고유값의 순서와, eigvc()로 구한 고유벡터는 그 순서가 서로 매칭됩니다.
- eigVc()로 구한 고유벡터는 정규화(=크기가 1) 된 값입니다.
2. 수동으로 고유값(Eigen Value) 찾는 방법
- 3×3 행렬을 변수 a 에 저장하고, 행렬식을 이용해 고유 방정식(p(λ))을 찾습니다.
- solve 로 고유값을 찾습니다. 2(중근)와 4가 나왔습니다.

└ 보기 좋으라고 그리스 문자 λ 를 찾아서 넣었습니다만, 그냥 알파벳 a~z 를 써도됩니다.
3. 수동으로 고유벡터(Eigen Vector) 찾는 방법
- rref(a-고유값) 으로 벡터 성분(v1, v2, v3)간의 관계식을 구할 수 있습니다.
- 벡터 성분간 관계식을 만족하는 벡터를 구하면 고유벡터가 됩니다.
(따라서 고유벡터는 유일(unique)한 값을 가지지 않습니다.)

ㄴ 고유값이 중근이므로 두개의 고유 벡터를 찾아보았습니다.
- 이번엔 고유값 4에 대한 고유벡터를 구해봅니다.

├ 이번에는 하나의 고유벡터만을 찾았습니다.
└ eigVc(a) 의 결과값은 정규화된 값임을 확인할 수 있습니다.
댓글7
-
세상의모든계산기
행렬a-λ 를 하게되면 자동으로 λ에 Identity Matrix 가 강제로 곱해져 계산됩니다.
행렬a 모든 원소값에 스칼라값을 빼려면 빼기부호 앞에 .(dot) 을 붙여 주어야 합니다.
-
세상의모든계산기
symmetric 한 행렬에 a대해 eigvc(a) 를 구했을 때...
서로 직교하는 3개의 벡터가 되면 좋겠지만... 그렇게 구해주진 않네요.

-
세상의모든계산기
행렬의 대각화 diagonalization 예제

eigvl 값을 찾았다면 대각행렬(diag)을 만들 수 있고,
대각행렬은 요소가 간단해서 역행렬을 매우 쉽게 찾을 수 있음.
p 와 p의 역행렬 그리고 d의 역행렬을 이용해 a의 역행렬을 계산할 수 있음.
ㄴ 다만, TI-nspire 에서는 정규화된 p를 찾아줘서 복잡하게 보이는 경향이 있음.
-
1
세상의모든계산기
2×2 (대칭) 행렬의 예

1. 고유값 {3,1} 찾기
2. 대각행렬 da 정의
3. 고유값을 이용해 고유 벡터 찾기
4. 고유벡터로 p 행렬 정의 p:=[[1 1][1 -1]]
5. da 와 p 를 이용해 a의 역함수 계산

6. 최종적으로 하나의 해를 찾을 수 있는데...
-
2
세상의모든계산기
대칭 행렬 \( a \)의 고유값과 고유벡터를 이용하여 해를 구하는 과정에서 굳이 \( D^{-1} \), \( P \), \( P^{-1} \)를 모두 계산하지 않고도, 고유값 분해와 고유벡터를 이용해 연립방정식을 더 간단하게 풀 수 있습니다.
1. 고유값 분해: 행렬 \( a \)의 고유값이 3과 1로 주어졌고, 각각의 고유벡터가 \( x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \)와 \( x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \)입니다.
2. 벡터 \( b \)를 고유벡터로 분해:
우선, \( b = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \)를 두 고유벡터 \( x_1 \)과 \( x_2 \)의 선형 결합으로 표현합니다.
즉, \( b = c_1 x_1 + c_2 x_2 \)를 만족하는 \( c_1 \)과 \( c_2 \)를 구합니다.
- \( x_1 \)과 \( x_2 \)가 직교하므로, 내적을 통해 \( c_1 \)과 \( c_2 \)를 쉽게 구할 수 있습니다.
- \( c_1 = \dfrac{b \cdot x_1}{x_1 \cdot x_1} = \dfrac{4 \times 1 + 3 \times 1}{1^2 + 1^2} = \dfrac{4 + 3}{2} = \dfrac{7}{2} = 3.5 \)
- \( c_2 = \dfrac{b \cdot x_2}{x_2 \cdot x_2} = \dfrac{4 \times 1 + 3 \times (-1)}{1^2 + (-1)^2} = \dfrac{4 - 3}{2} = \dfrac{1}{2} = 0.5 \)
3. 해 \( x \) 구하기:
이제 고유값을 사용하여 \( x = \dfrac{c_1}{\lambda_1} x_1 + \dfrac{c_2}{\lambda_2} x_2 \)를 계산합니다.
- \( x = \dfrac{3.5}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0.5 \begin{bmatrix} 1 \\ -1 \end{bmatrix} \)
- 이를 계산하면:
$ x = \begin{bmatrix} \dfrac{3.5}{3} + 0.5 \\ \dfrac{3.5}{3} - 0.5 \end{bmatrix} $
따라서 연립방정식의 해는 \( x = \begin{bmatrix} \dfrac{5}{3} \\ \dfrac{2}{3} \end{bmatrix} \)입니다.
세상의모든계산기 님의 최근 댓글
HP-39gII 에 ExistOS 설치하기 https://allcalc.org/38526 2025 11.07 1. 왜 검은색이 아닌 다른 색으로 보일까? (제공된 LUT 필터) 제가 제공해 드린 magenta_lens.cube LUT 필터는 540~560nm(녹색-노란색) 파장대의 색상을 '완전히 제거(검은색으로 만듦)'하는 대신, '다른 색상으로 왜곡/변환'하도록 설계되었습니다. * 원리: LUT(Look-Up Table)는 특정 입력 색상(Input RGB)을 미리 정해진 다른 출력 색상(Output RGB)으로 매핑하는 테이블입니다. 이 LUT는 540~560nm에 해당하는 RGB 값들이 들어오면, 검은색(0, 0, 0)이 아닌, 매우 어둡거나 채도가 낮은 특정 색(예: 어두운 올리브색, 갈색 등)으로 변환하라고 지시합니다. * 의도: * 현실적인 물리 필터 시뮬레이션: 실제 고가의 색약 보정 안경도 특정 파장을 100% 완벽하게 차단하지는 못합니다. 빛의 일부를 흡수하고 일부는 통과시키거나 변환하는데, 이 LUT는 그러한 현실 세계의 필터 효과를 더 비슷하게 흉내 냈을 수 있습니다. * 시각적 정보 유지: 특정 색을 완전히 검게 만들면 그 부분의 형태나 질감 정보가 완전히 사라집니다. 하지만 다른 어두운 색으로 대체하면, 색상 정보는 왜곡되더라도 밝기나 형태 정보는 어느 정도 유지되어 전체적인 이미지가 덜 어색하게 보일 수 있습니다. 결론적으로, 스펙트럼 그림에서 해당 대역의 색이 갑자기 '다른 색으로 툭 바뀌는' 현상은, LUT 필터가 "이 파장대의 색은 앞으로 이 색으로 표시해!"라고 강제적으로 지시한 결과이며, 이것이 바로 이 필터가 작동하는 방식 그 자체입니다. 2. 왜 'Color Vision Helper' 앱은 검은색으로 보일까? 비교하신 'Color Vision Helper' 앱은 노치 필터의 원리를 더 이상적(Ideal)이고 교과서적으로 구현했을 가능성이 높습니다. * 원리: "L-콘과 M-콘의 신호가 겹치는 540~560nm 파장의 빛은 '완전히 차단'되어야 한다"는 개념에 매우 충실한 방식입니다. * 구현: 따라서 해당 파장에 해당하는 색상 정보가 들어오면, 어떠한 타협도 없이 그냥 '검은색(RGB 0, 0, 0)'으로 처리해 버립니다. 이는 "이 파장의 빛은 존재하지 않는 것으로 처리하겠다"는 가장 강력하고 직접적인 표현입니다. 2025 11.06 적용사례 4 - 파장 스펙트럼 https://news.samsungdisplay.com/26683 ㄴ (좌) 연속되는 그라데이션 ➡️ (우) 540 이하 | 구분되는 층(색) | 560 이상 - 겹치는 부분, 즉 540~560 nm 에서 색상이 차단? 변형? 된 것을 확인할 수 있음. 그럼 폰에서 Color Vision Helper 앱으로 보면? ㄴ 540~560 nm 대역이 검은 띠로 표시됨. 완전 차단됨을 의미 2025 11.05 빨간 셀로판지로도 이시하라 테스트 같은 숫자 구분에서는 유사한 효과를 낼 수 있다고 합니다. 색상이 다양하다면 빨강이나, 노랑, 주황 등도 테스트해보면 재밌겠네요. 2025 11.05 안드로이드 앱 - "Color Vision Helper" 다운받아 본문 내용을 카메라로 찍어 보니, 본문 프로그램에서는 애매하게 보이던 부분에서도 구분이 완전 확실하게 되네요. 숫자 구분 능력 & 편의성 면에서 압도적이라고 할 수 있겠습니다. 2025 11.05