- TI BA II Plus
[BA II Plus] (예제) 주식의 현재가치 평가 : 영구성장 연금식 배당
문제 출처 :
http://kin.naver.com/qna/detail.nhn?d1id=4&dirId=40402&docId=236042806
문제 요약 :
주식회사 "마을"은 1년도 말에 주당 1150원을 배당한 후, 그 다음 4년 동안에는 매년 15%씩, 그리고 그 이후부터는 매년 10%씩 배당금을 계속 증가시키려고 한다.
이 주식의 요구수익률이 15%라면, 이 주식의 현재가치는 얼마인가?
1. NPV() 기능의 한계
NPV 기능을 이용하면 좋겠으나... 영구적으로 받는 금액을 현가화 해야 하므로, 무한의 리스트를 사용할 수 없는 NPV() 기능으로는 정확한 값을 구할 수가 없음.
참고 : http://www.allcalc.org/16514
2. 풀이
- 배당금 성장률이 다른 두 기간을 분리하여 각각의 NPV를 구하고, 그 값을 더하여 현재가치를 찾음
- 기간1 : 1기 말 ~ 5기 말까지 (15% 성장=요구수익률 동일)
- 기간2 : 6기 말부터 ~ 10% 영구성장
- 기간1 배당금의 현재가치
요구수익률과 같으므로 매기 받는 금액의 현재가치는 1,000원으로 동일
현가합 = 1000 원 * 5 = 5000 원
- 기간2 배당금의 현재가치
(영구성장 연금 합 & 현재가치 공식에 의거)
기간2 배당금의 5기 말 가치 = ((1150원×(1.15^4)) × 1.1) / (0.15-0.1) = 44249.858125 원
기간2 배당금의 현재가치 = 44249.858125 / (1.15^5) = 22000 원
- 주식의 현재가치
주식의 현재가치 = ③ + ④ = 27000 원
댓글4
-
세상의모든계산기
영구 성장 연금 현재가치 방법2 이용
https://www.bionicturtle.com/forum/threads/growing-annuity-time-value-question.1946/----------------------------
i' = (r-g)/(1+g) = ((0.15-0.1)/(1.1)) = 0.045454545454545
6기 이후 (고정) pmt' = ((1150*(1.15)^(4)*1.1)/(1.1)) = 5기 배당금
((2011.3571875)/(0.045454545454545)) = 44249.858125결국은 같은 식

키로 입력해야 함.
아님.
세상의모든계산기 님의 최근 댓글
참고 : 라플라스 해법 1- 문제풀이의 개요 [출처] 라플라스 해법 1- 문제풀이의 개요|작성자 공학 엔지니어 지망생 https://blog.naver.com/hgengineer/220380176222 2026 01.01 3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은 조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요. 100÷7 = 14.285714285714285714285714285714 소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다. 2025 12.30 그럼 해가 무한히 많은지 아닌지 어떻게 아느냐? 고등학교 수학 교과과정에 나오는 행렬의 판별식(d, determinant)을 이용하면 알 수 있습니다. ㄴ 고교과정에서는 2x2 행렬만 다루던가요? 연립방정식의 계수들로 행렬을 만들고 그 행렬식(determinant)을 계산하여야 합니다. 행렬식이 d≠0 이면 유일한 해가 존재하고, d=0 이면 해가 없거나 무수히 많습니다. * 정상적인 경우 (`2y + 8z = 115`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 8 | 행렬식 값 = 1(0 - (-7)) - 1(8 - 0) = 7 - 8 = -1 (0이 아니므로 유일한 해 존재) * 문제가 된 경우 (`2y + 7z = 100`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 7 | 행렬식 값 = 1(0 - (-7)) - 1(7 - 0) = 7 - 7 = 0 (0이므로 유일한 해가 존재하지 않음) 2025 12.30 좀 더 수학적으로 말씀드리면 (AI Gemini 참고) 수학적 핵심 원리: 선형 독립성(Linear Independence) 3원 1차 연립방정식에서 미지수 x, y, z에 대한 단 하나의 해(a unique solution)가 존재하기 위한 필수 조건은 '주어진 세 개의 방정식이 서로 선형 독립(linearly independent) 관계에 있어야 한다'는 것입니다. * 선형 독립 (Linearly Independent): 어떤 방정식도 다른 방정식들의 조합(상수배를 더하거나 빼는 등)으로 만들어질 수 없는 상태입니다. 기하학적으로 이는 3개의 평면(각 방정식은 3D 공간의 평면을 나타냄)이 단 한 개의 점(해)에서 만나는 것을 의미합니다. * 선형 종속 (Linearly Dependent): 하나 이상의 방정식이 다른 방정식들의 조합으로 표현될 수 있는 상태입니다. 이 경우, 새로운 정보를 제공하지 못하는 '잉여' 방정식이 존재하는 것입니다. 기하학적으로 이는 3개의 평면이 하나의 선에서 만나거나(무수히 많은 해), 완전히 겹치거나, 혹은 평행하여 만나지 않는(해가 없음) 상태를 의미합니다. 질문자님의 사례는 '선형 종속'이 되어 무수히 많은 해가 발생하는 경우입니다. 2025 12.30