- TI nspire
[TI-nspire] 피보나치의 수 (프로그래밍, 행렬)
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,
10946...
1. 행렬

단순히 n번째 피보나치 수를 구하는 목적이라면 위와 같이 행렬로 찾는 것이 공학용 계산기에서는 가장 간단(simple)합니다.
프로그래밍이나 함수 생성이 안되는 계산기라도 2×2 행렬만 생성할 수 있으면 (Ans)곱하기를 반복하여 n번째 수를 찾아낼 수 있기 때문입니다. (행렬 반복계산이 안되면 -_-)
위 스샷에서 p(9)를 예로 들면, 34(=9번째 수), 55(=10번째 수), 21(=8번째 수) 입니다.
p(3)*p(6) 을 하거나 p(4)*p(4)*p(1) 을 해보면 p(9)가 나오는 것을 알 수 있습니다.
2. 프로그래밍 (재귀)
프로그래밍과 관련해서는 우선 아래 링크를 읽어보시는 것이 좋겠습니다.
https://ko.wikipedia.org/wiki/%ED%94%BC%EB%B3%B4%EB%82%98%EC%B9%98_%EC%88%98_%ED%94%84%EB%A1%9C%EA%B7%B8%EB%9E%A8
http://blog.dgoon.net/fibonacci-number.html
가장 기본적인 재귀함수 프로그래밍을 올려보겠습니다.
가장 단순한 재귀함수인 만큼 큰 수(n)에서 시간이 오래 걸립니다.
3. 프로그래밍 (반복)
꼭 재귀호출로 구해야만 하는 것은 아닙니다.

세상의모든계산기 님의 최근 댓글
설명서 : https://www.casio.com/content/dam/casio/global/support/manuals/calculators/pdf/2022/f/fx-9910CW_EN.pdf 2026 01.02 참고 : 라플라스 해법 1- 문제풀이의 개요 [출처] 라플라스 해법 1- 문제풀이의 개요|작성자 공학 엔지니어 지망생 https://blog.naver.com/hgengineer/220380176222 2026 01.01 3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은 조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요. 100÷7 = 14.285714285714285714285714285714 소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다. 2025 12.30 그럼 해가 무한히 많은지 아닌지 어떻게 아느냐? 고등학교 수학 교과과정에 나오는 행렬의 판별식(d, determinant)을 이용하면 알 수 있습니다. ㄴ 고교과정에서는 2x2 행렬만 다루던가요? 연립방정식의 계수들로 행렬을 만들고 그 행렬식(determinant)을 계산하여야 합니다. 행렬식이 d≠0 이면 유일한 해가 존재하고, d=0 이면 해가 없거나 무수히 많습니다. * 정상적인 경우 (`2y + 8z = 115`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 8 | 행렬식 값 = 1(0 - (-7)) - 1(8 - 0) = 7 - 8 = -1 (0이 아니므로 유일한 해 존재) * 문제가 된 경우 (`2y + 7z = 100`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 7 | 행렬식 값 = 1(0 - (-7)) - 1(7 - 0) = 7 - 7 = 0 (0이므로 유일한 해가 존재하지 않음) 2025 12.30