- TI nspire
[TI-nspire] 계산 모드 : 근사값 vs 참값 Calculation Mode : Approx vs Exact
[TI-nspire] 에서는 결과를 정확하게 계산하여 보여주기도 하고, 대충 근사값으로 계산해서 그 값을 보여주기도 합니다. 보통의 경우라면 정확한 값을 나타내주는 Exact 모드가 좋습니다만, 때에 따라서는 Approx 모드가 편리할 때도 있습니다.
참 값 예) √2, sin-1(1/3)

1. 설정으로 변경 (지속 적용)
Document Setting 화면에 가서 Calculation Mode 를 바꿔 주시면 됩니다.

* CAS 모델에는 "Exact" 모드까지 총 3가지 선택지가 있고,
nonCAS 모델에는 (Auto/Approximate) 2가지 선택만 가능합니다.
2. 계산시 적용 (1회성)
엔터 위의 ≒(물결표시) 를 실행하기 위해 
(컨트롤 엔터) 를 누르세요.
설정과 무관하게 강제로 근사값 결과를 출력합니다. 1회만 적용되며, 그 다음부터는 원래 설정대로 적용됩니다.
3. 함수로 적용 (1회성)
approx(Expr)
exact(Expr,[Tolerance])
식(Expr) 전체를 위 함수들로 묶어주는 방법입니다.
4. 주의
수식에 소숫점이 들어가면 강제로 근사(Approx) 모드로 계산됩니다.

근사값 결과(Ans)를 이용하다 보면 오차에 따른 오류가 발생할 수 있으니 주의하시기 바랍니다.
(Result obtained using approximate arithmetic)
댓글4
-
세상의모든계산기
[TI-89 Titanium]에서도 nspire와 동일한 내용이 적용됩니다.
- 설정으로 변경
[MODE] [F2]
[Exact/Approx] [▶] [3:Approximate]

- 1회용으로 사용
- 설정으로 변경
-
세상의모든계산기
The non-CAS version will keep "exact" values that can be expressed in rational form.
The CAS version will keep "exact" values that can be expressed in both rational and irrational forms.AUTO on non-CAS version

AUTO on CAS version

출처 : https://mathbits.com/MathBits/TINSection/General/Mode.html
세상의모든계산기 님의 최근 댓글
3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은 조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요. 100÷7 = 14.285714285714285714285714285714 소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다. 2025 12.30 그럼 해가 무한히 많은지 아닌지 어떻게 아느냐? 고등학교 수학 교과과정에 나오는 행렬의 판별식(d, determinant)을 이용하면 알 수 있습니다. ㄴ 고교과정에서는 2x2 행렬만 다루던가요? 연립방정식의 계수들로 행렬을 만들고 그 행렬식(determinant)을 계산하여야 합니다. 행렬식이 d≠0 이면 유일한 해가 존재하고, d=0 이면 해가 없거나 무수히 많습니다. * 정상적인 경우 (`2y + 8z = 115`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 8 | 행렬식 값 = 1(0 - (-7)) - 1(8 - 0) = 7 - 8 = -1 (0이 아니므로 유일한 해 존재) * 문제가 된 경우 (`2y + 7z = 100`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 7 | 행렬식 값 = 1(0 - (-7)) - 1(7 - 0) = 7 - 7 = 0 (0이므로 유일한 해가 존재하지 않음) 2025 12.30 좀 더 수학적으로 말씀드리면 (AI Gemini 참고) 수학적 핵심 원리: 선형 독립성(Linear Independence) 3원 1차 연립방정식에서 미지수 x, y, z에 대한 단 하나의 해(a unique solution)가 존재하기 위한 필수 조건은 주어진 세 개의 방정식이 서로 선형 독립(linearly independent) 관계에 있어야 한다는 것입니다. * 선형 독립 (Linearly Independent): 어떤 방정식도 다른 방정식들의 조합(상수배를 더하거나 빼는 등)으로 만들어질 수 없는 상태입니다. 기하학적으로 이는 3개의 평면(각 방정식은 3D 공간의 평면을 나타냄)이 단 한 개의 점(해)에서 만나는 것을 의미합니다. * 선형 종속 (Linearly Dependent): 하나 이상의 방정식이 다른 방정식들의 조합으로 표현될 수 있는 상태입니다. 이 경우, 새로운 정보를 제공하지 못하는 '잉여' 방정식이 존재하는 것입니다. 기하학적으로 이는 3개의 평면이 하나의 선에서 만나거나(무수히 많은 해), 완전히 겹치거나, 혹은 평행하여 만나지 않는(해가 없음) 상태를 의미합니다. 질문자님의 사례는 '선형 종속'이 되어 무수히 많은 해가 발생하는 경우입니다. 2025 12.30 질문하신 연립 방정식은 미지수가 3개이고 모두 1차인 3원 1차 연립방정식입니다. 이상적으로 문제가 없다면 {x,y,z} 에 대한 좌표가 하나 나오게 됩니다. 원하는 답 {52.5, -2.5, 15} 그런데 두개 조건(식)을 그대로 두고 나머지 하나를 변형하다 보니 원하는 답이 나오지 않는 상황이 발생하였다고 질문하신 상황입니다. 3개의 조건식이 주어진 3원 1차 연립방정식은 조건을 변형해서 하나의 변수를 제거할 수 있습니다. 그러면 2개의 조건식으로 주어지는 2원 1차 연립방정식으로 변형할 수 있습니다. (알아보기 더 쉬워서 변형하는 겁니다) 변경하지 않은 조건의 식(con1) 을 이용해 하나의 y & z 1차 방정식을 유도할 수 있는데요. 나머지 방정식이 con1에서 유도된 방정식과 동일해지면 하나의 답이 구해지지 않는 것입니다. 계산기(ti-nspire)는 {x,y,z} 의 답이 하나가 아니고 무수히 많음을 c1 을 이용해서 표현해 준 것입니다. linear_independence_cond12.tns 2025 12.30