- TI nspire
[TI-nspire] 3D Graphing, 정사면체 그리기. Tetrahedron
각 변의 함수(Parametric)식 입력 방법
1. `Graphs & Geometry` 애플리케이션을 엽니다.
2. `Menu` 버튼을 누르고, `3D Graphing`을 선택합니다.
3. `Menu` -> `Entry/Edit` -> `Parametric`을 선택합니다.
4. 각 변의 식을 순서대로 입력합니다:
- 첫 번째 변: \( x(t) = 1 \), \( y(t) = 1 - 2t \), \( z(t) = 1 - 2t \)
- 두 번째 변: \( x(t) = 1 - 2t \), \( y(t) = 1 \), \( z(t) = 1 - 2t \)
- 세 번째 변: \( x(t) = 1 - 2t \), \( y(t) = 1 - 2t \), \( z(t) = 1 \)
- 네 번째 변: \( x(t) = 1 - 2t \), \( y(t) = -1 + 2t \), \( z(t) = -1 \)
- 다섯 번째 변: \( x(t) = 1 - 2t \), \( y(t) = -1 \), \( z(t) = -1 + 2t \)
- 여섯 번째 변: \( x(t) = -1 \), \( y(t) = 1 - 2t \), \( z(t) = -1 + 2t \)

이렇게 하면 정사면체의 모든 변을 3D 그래프에 그릴 수 있습니다. 각 변이 제대로 그려지면 정사면체의 구조가 완성됩니다.

두 점 사이의 거리

각 점을 A, B, C, D 라고 하면 벡터로 표현할 수 있고,
두 점 사이의 거리 = 정사면체 한변의 길이를 간단하게 구할 수 있습니다.
정사면체의 한 변의 길이를 계산하기 위해 두 꼭짓점 사이의 거리를 구하면 됩니다.
여기서는 주어진 꼭짓점 \(A(1, 1, 1)\)과 \(B(1, -1, -1)\) 사이의 거리를 계산해 보겠습니다.
두 점 \((x_1, y_1, z_1)\)과 \((x_2, y_2, z_2)\) 사이의 거리는 다음과 같이 계산됩니다:
\[ \text{거리} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \]
여기서,
- \(A(1, 1, 1)\)
- \(B(1, -1, -1)\)거리를 계산하면:
\[ \text{거리} = \sqrt{(1 - 1)^2 + (-1 - 1)^2 + (-1 - 1)^2} \]
\[ \text{거리} = \sqrt{0 + (-2)^2 + (-2)^2} \]
\[ \text{거리} = \sqrt{0 + 4 + 4} \]
\[ \text{거리} = \sqrt{8} \]
\[ \text{거리} = 2\sqrt{2} \]따라서, 이 정사면체의 한 변의 길이는 \(2\sqrt{2}\)입니다.
두 면 사이의 각도
두 면 사이의 각도는 두점 A, B의 중심점인 E와, 나머지 두 점 C, D 가 이루는 각도를 구하면 된다.
세 점 \( C \), \( E \), \( D \)를 연결한 선분이 이루는 각도를 구하기 위해 벡터를 사용해야 합니다. 먼저 점 \( E \)의 좌표를 구한 후, 벡터 \( \vec{CE} \)와 \( \vec{ED} \)를 구하고, 이 두 벡터 사이의 각도를 구할 수 있습니다.
### 점 \( E \)의 좌표
점 \( E \)는 \( A \)와 \( B \)의 중점이므로, \( E \)의 좌표는 다음과 같이 계산됩니다:
- \( A(1, 1, 1) \)
- \( B(1, -1, -1) \)\[ E = \left( \frac{1+1}{2}, \frac{1+(-1)}{2}, \frac{1+(-1)}{2} \right) = (1, 0, 0) \]
### 벡터 \( \vec{CE} \)와 \( \vec{ED} \) 구하기
- \( C(-1, 1, -1) \)
- \( D(-1, -1, 1) \)
- \( E(1, 0, 0) \)벡터 \( \vec{CE} \):
\[ \vec{CE} = E - C = (1 - (-1), 0 - 1, 0 - (-1)) = (2, -1, 1) \]벡터 \( \vec{ED} \):
\[ \vec{ED} = D - E = (-1 - 1, -1 - 0, 1 - 0) = (-2, -1, 1) \]### 두 벡터 사이의 각도 구하기
벡터 \( \vec{CE} \)와 \( \vec{ED} \) 사이의 각도 \( \theta \)는 다음 공식을 사용하여 구할 수 있습니다:\[ \cos \theta = \frac{\vec{CE} \cdot \vec{ED}}{|\vec{CE}| |\vec{ED}|} \]
내적 \( \vec{CE} \cdot \vec{ED} \):
\[ \vec{CE} \cdot \vec{ED} = (2)(-2) + (-1)(-1) + (1)(1) = -4 + 1 + 1 = -2 \]벡터 \( \vec{CE} \)의 크기 \( |\vec{CE}| \):
\[ |\vec{CE}| = \sqrt{(2)^2 + (-1)^2 + (1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \]벡터 \( \vec{ED} \)의 크기 \( |\vec{ED}| \):
\[ |\vec{ED}| = \sqrt{(-2)^2 + (-1)^2 + (1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \]따라서,
\[ \cos \theta = \frac{-2}{\sqrt{6} \cdot \sqrt{6}} = \frac{-2}{6} = -\frac{1}{3} \]\[
\theta = \cos^{-1}\left( -\frac{1}{3} \right)
\]이를 계산하면:
\[
\theta \approx 109.47^\circ
\]따라서, 세 점 \( C \), \( E \), \( D \)를 연결한 선분이 이루는 각도는 약 \( 109.47^\circ \)입니다.
벡터 \( \vec{CE} \)와 \( \vec{DE} \) 사이의 각도 \( \theta \) 는 180 - 109.47 = 70.53

댓글3
-
세상의모든계산기
3d 라이브러리 이용하기
1. https://allcalc.org/9730 을 참고해 geo3d.tns (영문)을 MyLib 폴더에 올리고, Refresh Library 를 수행합니다.
(프랑스어) 버전과 버전은 같은데 명령어 철자가 조금씩 달라서 일단은 영문판을 추천드립니다.2. 꼭지점 a,b,c,d 를 이용해 파라메트릭 함수를 생성합니다.

꼭지점이 리스트 꼴 {x1,y1,z1} 이면 좀 더 쉬워지지만, 벡터 꼴이라서 colAugment 함수를 중복해 활용하였습니다.
3. geo3d\putg(7,10) 를 실행해 g7~g10까지 4개 면에 대한 3d 파라메트릭 함수를 자동 생성합니다.
4. 3d Graphing 페이지에 가서 g7~g10 해당 함수를 화면에 보이도록 활성화(체크)해줍니다.
본문은 6개의 선분으로 그래핑했지만, 여기서는 4개 면으로 그래핑했기 때문에 면에 Surface(색) 과 Wire(선) 을 입힐 수 있음.
세상의모든계산기 님의 최근 댓글
쌀집계산기로 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 https://allcalc.org/56739 3. 'x' 값 구하기 계산기 조작법 목표: x = Dx / D = [(c×e) - (b×f)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 1 * 1 M+ : 메모리(M)에 1를 더합니다. (현재 M = 1) -0.1 * -0.2 M- : 메모리(M)에서 0.02를 뺍니다. (현재 M = 0.98 = 0.98) 이로써 메모리(MR)에는 분모 0.98가 저장됩니다. 2단계: 분자 Dx 계산 후 나누기 78000 * 1 : 78000를 계산합니다. = : GT에 더합니다. -0.1 * 200000 : -20000를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. // sign changer 버튼 사용 GT : GT를 불러옵니다. GT는 98000 (분자 Dx) 값입니다. ÷ MR = : 위 결과(98000)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 x값 100,000를 구합니다. 4. 'y' 값 구하기 계산기 조작법 목표: y = Dy / D = [(a×f) - (c×d)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 'x'에서와 분모는 동일하고 메모리(MR)에 0.98가 저장되어 있으므로 패스합니다. 2단계: 분자 Dy 계산 후 나누기 GT ± = : GT를 불러오고 부호를 뒤집어 GT에 더합니다. GT가 0으로 리셋됩니다. 【AC】를 누르면 M은 유지되고 GT만 리셋되는 계산기도 있으니 확인해 보세요. 1 * 200000 : 200000를 계산합니다. = : GT에 더합니다. 78000 * -0.2 : -15600를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. GT : GT를 불러옵니다. 215600 (분자 Dy) 값입니다. ÷ MR = : 위 결과(215600)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 y값 220,000를 구합니다. x, y 값을 이용해 최종 결과를 구합니다. 2026 01.18 크레이머 = 크레머 = 크라메르 공식 = Cramer's Rule https://allcalc.org/8985 2026 01.18 부호 변경, Sign Changer 버튼 https://allcalc.org/52092 2026 01.18 [fx-570 CW] 와의 차이 CW에 【×10x】버튼이 사라진 것은 아닌데, 버튼을 누를 때 [ES][EX] 처럼 특수기호 뭉치가 생성되는 것이 아니고, 【×】【1】【0】【xㅁ】 버튼이 차례로 눌린 효과가 발생됨. ※ 계산 우선순위 차이가 발생할 수 있으므로 주의. 괄호로 해결할 것! 2026 01.18 26년 1월 기준 국가 전문자격 종류 가맹거래사 감정사 감정평가사 검량사 검수사 경매사 경비지도사 경영지도사 공인노무사 공인중개사 관광통역안내사 관세사 국가유산수리기능자(24종목) 국가유산수리기술자 국내여행안내사 기술지도사 농산물품질관리사 물류관리사 박물관 및 미술관 준학예사 변리사 사회복지사 1급 산업보건지도사 산업안전지도사 세무사 소방시설관리사 소방안전교육사 손해평가사 수산물품질관리사 정수시설운영관리사 주택관리사보 청소년상담사 청소년지도사 한국어교육능력검정시험 행정사 호텔경영사 호텔관리사 호텔서비스사 2026 01.17