- TI nspire
[TI-nspire] 3D Graphing, 정사면체 그리기. Tetrahedron
각 변의 함수(Parametric)식 입력 방법
1. `Graphs & Geometry` 애플리케이션을 엽니다.
2. `Menu` 버튼을 누르고, `3D Graphing`을 선택합니다.
3. `Menu` -> `Entry/Edit` -> `Parametric`을 선택합니다.
4. 각 변의 식을 순서대로 입력합니다:
- 첫 번째 변: \( x(t) = 1 \), \( y(t) = 1 - 2t \), \( z(t) = 1 - 2t \)
- 두 번째 변: \( x(t) = 1 - 2t \), \( y(t) = 1 \), \( z(t) = 1 - 2t \)
- 세 번째 변: \( x(t) = 1 - 2t \), \( y(t) = 1 - 2t \), \( z(t) = 1 \)
- 네 번째 변: \( x(t) = 1 - 2t \), \( y(t) = -1 + 2t \), \( z(t) = -1 \)
- 다섯 번째 변: \( x(t) = 1 - 2t \), \( y(t) = -1 \), \( z(t) = -1 + 2t \)
- 여섯 번째 변: \( x(t) = -1 \), \( y(t) = 1 - 2t \), \( z(t) = -1 + 2t \)

이렇게 하면 정사면체의 모든 변을 3D 그래프에 그릴 수 있습니다. 각 변이 제대로 그려지면 정사면체의 구조가 완성됩니다.

두 점 사이의 거리

각 점을 A, B, C, D 라고 하면 벡터로 표현할 수 있고,
두 점 사이의 거리 = 정사면체 한변의 길이를 간단하게 구할 수 있습니다.
정사면체의 한 변의 길이를 계산하기 위해 두 꼭짓점 사이의 거리를 구하면 됩니다.
여기서는 주어진 꼭짓점 \(A(1, 1, 1)\)과 \(B(1, -1, -1)\) 사이의 거리를 계산해 보겠습니다.
두 점 \((x_1, y_1, z_1)\)과 \((x_2, y_2, z_2)\) 사이의 거리는 다음과 같이 계산됩니다:
\[ \text{거리} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \]
여기서,
- \(A(1, 1, 1)\)
- \(B(1, -1, -1)\)거리를 계산하면:
\[ \text{거리} = \sqrt{(1 - 1)^2 + (-1 - 1)^2 + (-1 - 1)^2} \]
\[ \text{거리} = \sqrt{0 + (-2)^2 + (-2)^2} \]
\[ \text{거리} = \sqrt{0 + 4 + 4} \]
\[ \text{거리} = \sqrt{8} \]
\[ \text{거리} = 2\sqrt{2} \]따라서, 이 정사면체의 한 변의 길이는 \(2\sqrt{2}\)입니다.
두 면 사이의 각도
두 면 사이의 각도는 두점 A, B의 중심점인 E와, 나머지 두 점 C, D 가 이루는 각도를 구하면 된다.
세 점 \( C \), \( E \), \( D \)를 연결한 선분이 이루는 각도를 구하기 위해 벡터를 사용해야 합니다. 먼저 점 \( E \)의 좌표를 구한 후, 벡터 \( \vec{CE} \)와 \( \vec{ED} \)를 구하고, 이 두 벡터 사이의 각도를 구할 수 있습니다.
### 점 \( E \)의 좌표
점 \( E \)는 \( A \)와 \( B \)의 중점이므로, \( E \)의 좌표는 다음과 같이 계산됩니다:
- \( A(1, 1, 1) \)
- \( B(1, -1, -1) \)\[ E = \left( \frac{1+1}{2}, \frac{1+(-1)}{2}, \frac{1+(-1)}{2} \right) = (1, 0, 0) \]
### 벡터 \( \vec{CE} \)와 \( \vec{ED} \) 구하기
- \( C(-1, 1, -1) \)
- \( D(-1, -1, 1) \)
- \( E(1, 0, 0) \)벡터 \( \vec{CE} \):
\[ \vec{CE} = E - C = (1 - (-1), 0 - 1, 0 - (-1)) = (2, -1, 1) \]벡터 \( \vec{ED} \):
\[ \vec{ED} = D - E = (-1 - 1, -1 - 0, 1 - 0) = (-2, -1, 1) \]### 두 벡터 사이의 각도 구하기
벡터 \( \vec{CE} \)와 \( \vec{ED} \) 사이의 각도 \( \theta \)는 다음 공식을 사용하여 구할 수 있습니다:\[ \cos \theta = \frac{\vec{CE} \cdot \vec{ED}}{|\vec{CE}| |\vec{ED}|} \]
내적 \( \vec{CE} \cdot \vec{ED} \):
\[ \vec{CE} \cdot \vec{ED} = (2)(-2) + (-1)(-1) + (1)(1) = -4 + 1 + 1 = -2 \]벡터 \( \vec{CE} \)의 크기 \( |\vec{CE}| \):
\[ |\vec{CE}| = \sqrt{(2)^2 + (-1)^2 + (1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \]벡터 \( \vec{ED} \)의 크기 \( |\vec{ED}| \):
\[ |\vec{ED}| = \sqrt{(-2)^2 + (-1)^2 + (1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \]따라서,
\[ \cos \theta = \frac{-2}{\sqrt{6} \cdot \sqrt{6}} = \frac{-2}{6} = -\frac{1}{3} \]\[
\theta = \cos^{-1}\left( -\frac{1}{3} \right)
\]이를 계산하면:
\[
\theta \approx 109.47^\circ
\]따라서, 세 점 \( C \), \( E \), \( D \)를 연결한 선분이 이루는 각도는 약 \( 109.47^\circ \)입니다.
벡터 \( \vec{CE} \)와 \( \vec{DE} \) 사이의 각도 \( \theta \) 는 180 - 109.47 = 70.53

댓글3
-
세상의모든계산기
3d 라이브러리 이용하기
1. https://allcalc.org/9730 을 참고해 geo3d.tns (영문)을 MyLib 폴더에 올리고, Refresh Library 를 수행합니다.
(프랑스어) 버전과 버전은 같은데 명령어 철자가 조금씩 달라서 일단은 영문판을 추천드립니다.2. 꼭지점 a,b,c,d 를 이용해 파라메트릭 함수를 생성합니다.

꼭지점이 리스트 꼴 {x1,y1,z1} 이면 좀 더 쉬워지지만, 벡터 꼴이라서 colAugment 함수를 중복해 활용하였습니다.
3. geo3d\putg(7,10) 를 실행해 g7~g10까지 4개 면에 대한 3d 파라메트릭 함수를 자동 생성합니다.
4. 3d Graphing 페이지에 가서 g7~g10 해당 함수를 화면에 보이도록 활성화(체크)해줍니다.
본문은 6개의 선분으로 그래핑했지만, 여기서는 4개 면으로 그래핑했기 때문에 면에 Surface(색) 과 Wire(선) 을 입힐 수 있음.
세상의모든계산기 님의 최근 댓글
참고 - [공학용 계산기] 로그의 입력 (log, ln) (feat. 밑 입력이 안되는 계산기는?) https://allcalc.org/14995 2025 11.14 HP-39gII 에 ExistOS 설치하기 https://allcalc.org/38526 2025 11.07 1. 왜 검은색이 아닌 다른 색으로 보일까? (제공된 LUT 필터) 제가 제공해 드린 magenta_lens.cube LUT 필터는 540~560nm(녹색-노란색) 파장대의 색상을 '완전히 제거(검은색으로 만듦)'하는 대신, '다른 색상으로 왜곡/변환'하도록 설계되었습니다. * 원리: LUT(Look-Up Table)는 특정 입력 색상(Input RGB)을 미리 정해진 다른 출력 색상(Output RGB)으로 매핑하는 테이블입니다. 이 LUT는 540~560nm에 해당하는 RGB 값들이 들어오면, 검은색(0, 0, 0)이 아닌, 매우 어둡거나 채도가 낮은 특정 색(예: 어두운 올리브색, 갈색 등)으로 변환하라고 지시합니다. * 의도: * 현실적인 물리 필터 시뮬레이션: 실제 고가의 색약 보정 안경도 특정 파장을 100% 완벽하게 차단하지는 못합니다. 빛의 일부를 흡수하고 일부는 통과시키거나 변환하는데, 이 LUT는 그러한 현실 세계의 필터 효과를 더 비슷하게 흉내 냈을 수 있습니다. * 시각적 정보 유지: 특정 색을 완전히 검게 만들면 그 부분의 형태나 질감 정보가 완전히 사라집니다. 하지만 다른 어두운 색으로 대체하면, 색상 정보는 왜곡되더라도 밝기나 형태 정보는 어느 정도 유지되어 전체적인 이미지가 덜 어색하게 보일 수 있습니다. 결론적으로, 스펙트럼 그림에서 해당 대역의 색이 갑자기 '다른 색으로 툭 바뀌는' 현상은, LUT 필터가 "이 파장대의 색은 앞으로 이 색으로 표시해!"라고 강제적으로 지시한 결과이며, 이것이 바로 이 필터가 작동하는 방식 그 자체입니다. 2. 왜 'Color Vision Helper' 앱은 검은색으로 보일까? 비교하신 'Color Vision Helper' 앱은 노치 필터의 원리를 더 이상적(Ideal)이고 교과서적으로 구현했을 가능성이 높습니다. * 원리: "L-콘과 M-콘의 신호가 겹치는 540~560nm 파장의 빛은 '완전히 차단'되어야 한다"는 개념에 매우 충실한 방식입니다. * 구현: 따라서 해당 파장에 해당하는 색상 정보가 들어오면, 어떠한 타협도 없이 그냥 '검은색(RGB 0, 0, 0)'으로 처리해 버립니다. 이는 "이 파장의 빛은 존재하지 않는 것으로 처리하겠다"는 가장 강력하고 직접적인 표현입니다. 2025 11.06 적용사례 4 - 파장 스펙트럼 https://news.samsungdisplay.com/26683 ㄴ (좌) 연속되는 그라데이션 ➡️ (우) 540 이하 | 구분되는 층(색) | 560 이상 - 겹치는 부분, 즉 540~560 nm 에서 색상이 차단? 변형? 된 것을 확인할 수 있음. 그럼 폰에서 Color Vision Helper 앱으로 보면? ㄴ 540~560 nm 대역이 검은 띠로 표시됨. 완전 차단됨을 의미 2025 11.05 빨간 셀로판지로도 이시하라 테스트 같은 숫자 구분에서는 유사한 효과를 낼 수 있다고 합니다. 색상이 다양하다면 빨강이나, 노랑, 주황 등도 테스트해보면 재밌겠네요. 2025 11.05