- TI nspire
[TI-nspire] 계산기 입력 한계를 넘는 큰 숫자의 계산
1. 계산식
$ 100 \times \left(e^{-4000} \times \left(3 \times e^{2000} - 5\right)^2\right) $
2. [TI-nspire] 계산기 계산결과

3. [Wolfram-Alpha] 계산 결과
4. TI-nspire 분석
괄호 안의 계산을 마친 후에 괄호 밖을 계산하도록 설계된 듯 함.
괄호 안이 계산기 허용 한계치를 넘음
∞ 로 반환되어 overflow 발생
다음 계산 불가능
5. 해결 방법

- 지수부분을 처리하기 전에 expand 명령으로 적당히 분리시킴
- 분리 부분이 1/∞ 꼴이 되어 0이 되도록 만듦
- 모든 경우에 통용되는 방법은 아닐 듯


세상의모든계산기 님의 최근 댓글
설명서 : https://www.casio.com/content/dam/casio/global/support/manuals/calculators/pdf/2022/f/fx-9910CW_EN.pdf 2026 01.02 참고 : 라플라스 해법 1- 문제풀이의 개요 [출처] 라플라스 해법 1- 문제풀이의 개요|작성자 공학 엔지니어 지망생 https://blog.naver.com/hgengineer/220380176222 2026 01.01 3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은 조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요. 100÷7 = 14.285714285714285714285714285714 소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다. 2025 12.30 그럼 해가 무한히 많은지 아닌지 어떻게 아느냐? 고등학교 수학 교과과정에 나오는 행렬의 판별식(d, determinant)을 이용하면 알 수 있습니다. ㄴ 고교과정에서는 2x2 행렬만 다루던가요? 연립방정식의 계수들로 행렬을 만들고 그 행렬식(determinant)을 계산하여야 합니다. 행렬식이 d≠0 이면 유일한 해가 존재하고, d=0 이면 해가 없거나 무수히 많습니다. * 정상적인 경우 (`2y + 8z = 115`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 8 | 행렬식 값 = 1(0 - (-7)) - 1(8 - 0) = 7 - 8 = -1 (0이 아니므로 유일한 해 존재) * 문제가 된 경우 (`2y + 7z = 100`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 7 | 행렬식 값 = 1(0 - (-7)) - 1(7 - 0) = 7 - 7 = 0 (0이므로 유일한 해가 존재하지 않음) 2025 12.30