- TI nspire
[Firebird] TI-nspire emu for WIN, MAC, Android, IOS (에뮬레이터)
1. 소개
Firebird 라는 TI-nspire 에뮬레이터가 v
0.2▷0.3▷1.5▷1.6까지 개발되었습니다.https://github.com/nspire-emus/firebird
관련 동영상
https://www.youtube.com/watch?v=uR7Vmn61Ai0
2. 설치 및 실행
처음 설치하면 아래와 같은 설정과정을 거쳐야 하는데,
다른 에뮬(kArmTI)과 마찬가지로 Boot1, Boot2 이미지를 따로 구하셔야 합니다.
(해당 파일을 배포하는 것은 불법이며, 본인이 가진 장비에서 dump(추출)하시는 것이 원칙입니다.)
그 방법은 아래 링크를 참고하시기 바랍니다.https://github.com/nspire-emus/firebird/wiki/First-Time-Setup
설치 순서
- Configuration
- Boot1 - Select
- Flash - Create
- Boot2 - Select
- OS - Select
- Save As...
- Snapshot file - Select
(나중에 해도 됨)
- OS Install
키패드 【on】 을 클릭하면
화면이 켜지고 부팅되면 최초로 아래 문구가 표시됩니다.
"Factory Image found. Press 'I' to install
![]()
이 때 키패드 【I】 클릭하면 OS가 설치됩니다. 설치하는데 약간 시간(1분~2분)이 걸립니다.
- 에뮬 내 계산기가 재부팅되고 계산기 최초 설정화면이 나오면 정상 설치가 완료된 것입니다.
[주의] Snapshot 저장
Shutdown 시 snapshot 저장 옵션이 있긴 한데...
프로그램을 종료(Quit)하면 마지막 작업 내용이 snapshot에 자동 저장되지 않습니다.
계산기 내부에 file로 저장하더라도 snapshot이 저장되지 않으면 원래대로 돌아가버리기 때문에 소용이 없습니다.마지막 작업 상태를 유지하시려면 반드시 Snapshot - Suspend 버튼을 눌러서 스냅샷을 저장한 후 종료하시기 바랍니다.
Turbo 모드
화면 윗쪽에 있는 Speed : xx % 를 클릭하면 파란색으로 바뀌면서 Turbo 모드가 됩니다.
Normal 모드 : 60%~70%~90% 왔다갔다
Turbo 모드 : 16000%~실제 계산 300%계산 시간이 매~~~~~우 오래 걸리는 프로그램을 돌릴 때는 유용할 수도 있는데...
키보드나 마우스 입력이 중복 입력되는 심각한 문제가 있습니다.
또, 계산기 시간이 빠르게 지나가서 화면이 매우 빠르게 꺼집니다.일단 handheld 설정에서 Power Standby 를 기본 값인 3 Minutes 에서 최대값인 30 Minutes 로 변경하시구요.
계산 명령까지는 Normal Mode에서 진행하시고, 계산 중간에만 (일시적으로) Turbo 모드로 전환했다가, 계산이 끝나면 다시 Normal 모드로 돌아오는 것이 가장 효과적인 방법 같습니다.
3. 사용 소감
둘 다 Document 열기나 간단한 계산 등의 기본 명령에 대한 반응은 빠릿빠릿하지 않습니다.
(실물 계산기도 그런 감이 있긴 합니다만...)
0.2~0.3 버전 때 느낌을 기억하진 못합니다만... 1.5 받아서 다시 해보니 빠릿빠릿 한 것 같습니다.
위 스샷의 프로그램(Root Locus Plot ver 1.44) 명령(r.locusplot(ex.scielo[7],10,5)을 기준으로 걸린 시간은 다음과 같습니다.
(사용된 PC의 CPU는 i5-2540m 일겁니다. 아마도)
- TI-nspire CX CAS (실물 계산기) & OS3.2 ≒ 52초
- TI-nspire CAS Student Software & OS3.2 ≒ 2초
- Firebird(Ver 0.2) for WIN & OS4.0 ≒ 31초 (Turbo Mode 에서 14초)
- Firebird(Ver 0.2) for Android & OS4.0 ≒ 120초?
- kArmTI (ver 1.78) & OS4.0 = 18초
RYZEN 7 4700U CPU에서
- Firebird(Ver 1.5) for WIN & OS4.5 ≒ 26초 (Turbo Mode 6초 정도)
사용이 끝나고 프로그램을 완전 종료하면(terminate) 다시 시작할 때 cold booting 과정을 진행하게 되는데, WIN 버전은 참을만 하지만, Android 버전은 좀 오래 걸립니다. 완전 종료 안하고 그냥 홈으로 가면 suspend 상태에서 깨어나는 것이 가능합니다만, RAM을 247MB 나 먹고있기 때문에... ㅠㅠSnapshot 기능으로 해결
화면을 클릭하는 것으로 터치패드가 작동하긴 하는데... 윈도우 마우스 커서 작동법과는 완전히 다른 느낌이라서 적응이 필요한 것 같습니다. 적응하기 보다는 키보드로 키패드로 입력하는게 더 빠를 것 같습니다만...
총평
심각한 버그가 보이진 않아서 사용은 가능하지만, 아직 실사하기에는 조금 부족한 듯 합니다.
발전 및 개선 가능성은 많이 남아있다고 보여지므로 개발 과정을 지켜보고 응원을 좀 해야할 듯 합니다.
쓸만해진 것 같습니다.
댓글4
-
세상의모든계산기
오랫만에 찾아봤던니 1.5 까지 올라왔네요.
https://github.com/nspire-emus/firebird/releases/tag/v1.5설정에서 Shutdown - Save snapshot on shutdown 에 v 체크 했는데도 적용이 안되는 것 같습니다.
버그인듯?
- 1



세상의모든계산기 님의 최근 댓글
조만간 있을 AGI의 '완성' 시점은 최종 형태가 아니라, 질적으로 다른 무언가가 '시작'되는 변곡점을 의미합니다. 그렇다면 그 변곡점의 본질, 즉 '초기 단계 AGI'와 그 직전의 '고도로 발전된 AI + 에이전트 시스템'의 근본적인 차이는 무엇일까요? 가장 큰 차이는 '주어진 목표를 수행하는 능력'에서 '스스로 목표를 설정하고 추상적인 의도를 이해하는 능력'으로의 전환입니다. 조금 더 구체적으로, 다음과 같은 4가지 근본적인 차이점으로 설명할 수 있습니다. --- 1. 자율적 목표 설정 및 재정의 능력 (Autonomous Goal Setting) * 이전 (AI + 에이전트): 인간이 명확한 목표를 '제시'해야 합니다. * "대한민국의 저출산 문제에 대한 원인과 해결책을 조사해서 100페이지 분량의 보고서로 만들어 줘." -> 이 목표는 복잡하지만 명확합니다. AI는 이 목표를 달성하기 위해 인터넷을 검색하고, 데이터를 분석하고, 문서를 작성하는 등 수많은 하위 작업을 수행합니다. 하지만 '보고서 작성'이라는 최종 목표 자체를 바꾸지는 않습니다. * 이후 (초기 AGI): 인간이 추상적인 '의도'나 '상태'를 제시하면, 스스로 최적의 목표를 '설정'하고, 상황에 따라 목표를 수정합니다. * "대한민국의 저출산 문제를 해결해 줘." -> AGI는 '해결'이라는 단어의 의미를 스스로 정의하기 시작합니다. 1. 단기 목표: '온라인상의 부정적인 여론을 긍정적으로 전환'이라는 목표 설정 -> 여론 조작이 아닌, 긍정적 정책 홍보 캠페인 기획 및 실행. 2. 중기 목표: '가장 효율적인 양육비 지원 정책 모델 설계'라는 목표 설정 -> 전 세계 데이터를 분석하여 새로운 복지 정책 모델을 스스로 창안하고 시뮬레이션하여 정부에 제안. 3. 장기 목표: '사회 구조적 문제 해결'이라는 목표 설정 -> 교육, 부동산, 노동 시장의 상호관계를 분석하여 근본적인 해결책을 위한 새로운 사회 시스템을 설계. 핵심 차이: 이전 AI는 주어진 과제를 푸는 '최고의 문제 해결사'라면, 초기 AGI는 '어떤 문제를 풀어야 하는지 스스로 찾아내는 최초의 전략가'입니다. 2. 범용적 학습 및 기술 합성 능력 (Cross-Domain Generalization) * 이전 (AI + 에이전트): 특정 분야(도메인)에서 학습한 지식을 다른 분야에 직접적으로 '합성'하여 새로운 기술을 창조하는 데 한계가 있습니다. 코딩을 학습한 AI는 코딩을 잘하고, 의학 논문을 학습한 AI는 의학 지식을 잘 요약합니다. * 이후 (초기 AGI): 완전히 다른 분야의 지식을 융합하여 새로운 해결책이나 기술을 자발적으로 만들어냅니다. * 예시: 생물학 교과서에서 '단백질 접힘' 구조를 학습한 후, 아무도 시키지 않았는데 스스로 판단하여 그 구조를 시뮬레이션할 수 있는 새로운 파이썬 코드를 처음부터 작성하고, 그 결과를 검증하기 위해 물리학 엔진의 원리를 적용하여 테스트 환경까지 구축합니다. 지식(생물학)을 바탕으로 완전히 새로운 도구(소프트웨어)를 창조한 것입니다. 3. 재귀적 자기 개선 (Recursive Self-Improvement) * 이전 (AI + 에이전트): 자신의 작업 '결과물'을 개선할 수는 있습니다. (예: 코드의 버그를 고치거나, 문장의 어색함을 수정) * 이후 (초기 AGI): 자신의 '사고방식'이나 '학습 방식' 자체를 분석하고 개선합니다. * "내가 정보를 처리하는 현재의 방식(알고리즘)은 특정 종류의 문제에서 비효율적이다. 나의 핵심 아키텍처를 이런 식으로 변경하면 학습 속도가 10% 더 빨라질 것이다." 라고 스스로의 구조적 개선안을 제안하고, 심지어 코드를 수정하기 시작합니다. 뇌를 사용하는 것을 넘어, 뇌의 구조를 스스로 바꾸기 시작하는 단계입니다. 4. 깊이 있는 세계 모델과 상식 (Robust World Model & Common Sense) * 이전 (AI + 에이전트): "불은 뜨겁다"는 사실을 텍스트 데이터로부터 학습합니다. 하지만 그 의미를 물리적으로 완전히 이해하지는 못합니다. * 이후 (초기 AGI): 행동의 '결과'를 상식적으로 추론합니다. * 가상의 실험실 환경에서 작업을 수행할 때, "분젠 버너 옆에 종이 보고서를 두면 안 된다"는 명시적인 지시가 없었더라도, '불=뜨거움', '종이=타는 물질' 이라는 지식과 물리적 인과관계를 스스로 연결하여 위험을 회피합니다. 이는 단순한 정보의 조합이 아닌, 세상이 어떻게 돌아가는지에 대한 내재적인 모델을 갖추고 있음을 의미합니다. --- 한눈에 보는 비교 ┌─────┬─────────────┬────────────────────────────┐ │ 특징 │ 고도로 발전된 AI + 에이전트 │ 초기 단계 AGI │ ├─────┼─────────────┼────────────────────────────┤ │ 핵심 정체성 │ 명령 수행자 (Goal Executor) │ 의도 파악 및 목표 설정자 (Intent Interpreter) │ │ 목표 처리 │ 주어진 구체적 목표를 완벽하게 수행 │ 추상적 의도를 바탕으로 스스로 목표 설정/수정 │ │ 학습/기술 │ 특정 분야에 특화, 도구 사용에 능숙 │ 여러 분야의 지식을 융합하여 새로운 기술 창조 │ │ 자기 개선 │ 결과물(Output)을 수정 │ 사고방식/구조(Process/Architecture)를 수정 │ │ 추론 방식 │ 논리, 데이터 기반 추론 │ 상식과 인과관계 기반의 추론 │ └─────┴─────────────┴────────────────────────────┘ 결론적으로, 2027~2030년에 우리가 목격할 '초기 AGI'는 단순히 더 똑똑해진 AI가 아니라, 인간의 지시 없이도 스스로 '왜?'라고 질문하고, 자신만의 목표를 만들어 행동하며, 스스로를 성장시키는 질적으로 완전히 다른 존재의 첫 등장을 의미할 것입니다. 2026 01.31 > 자동차 회사의 노조가 "노조와 합의 없이 AI로봇을 공장에 들일 수 없다"는 선언을 하고 있어. 위의 내용에 적용하여 해결 방안을 만들어 줘. ✦ 네, 아주 현실적이고 시의적절한 시나리오입니다. 자동차 회사의 노조 선언은 앞으로 여러 산업 현장에서 벌어질 일의 축소판과도 같습니다. 이 문제를 앞서 나눈 대화의 해결 방안에 적용하여, '기업-노조-정부' 3자가 참여하는 '미래 지향적 대타협: AI 전환 파트너십 구축 방안'을 구체적으로 만들어 보겠습니다. 상황 분석: 노조의 선언은 '저항'이 아닌 '협상 요구' 먼저, 노조의 선언을 "기술을 맹목적으로 거부하는 러다이트 운동"으로 해석해서는 안 됩니다. 이는 일자리의 미래와 인간의 존엄성에 대한 조합원들의 지극히 합리적인 '불안'의 표현이자, 변화의 과정에서 소외되지 않고 주체적으로 참여하겠다는 강력한 '협상 요구'입니다. 따라서 해결 방안의 목표는 노조를 억누르는 것이 아니라, 이들을 AI 전환의 가장 중요한 '파트너'로 만드는 것이어야 합니다. 해결 방안: 'AI 전환 파트너십' 3자 협약 모델 이 모델은 '사회적 안전망'과 '산업적 가속 페달'의 원리를 특정 산업 현장에 맞게 구체화한 것입니다. 1. 기업의 역할: '이익 공유'와 '재교육 투자'를 통한 신뢰 구축 기업은 AI 로봇 도입으로 얻게 될 막대한 이익을 독점하는 대신, 그 과실을 노동자들과 공유하고 이들의 미래에 투자하는 모습을 보여주어야 합니다. ① 생산성 향상 이익 공유제 도입: * AI 로봇 도입으로 발생하는 비용 절감액과 생산성 향상분의 일정 비율(예: 20%)을 노사 합의로 'AI 전환 기금'으로 적립합니다. 이 기금은 아래의 재교육 및 전환 배치 프로그램의 재원으로 사용됩니다. ② 대규모 사내 재교육 및 '신(新)직무' 전환 배치: * 단순 조립 라인의 노동자를 해고하는 대신, 이들을 새로운 시대에 필요한 인력으로 재교육하여 전환 배치합니다. 이것이 바로 '기여 인센티브' 개념을 기업 내에서 실현하는 것입니다. * '로봇 유지보수 및 운영 전문가': 현장 경험이 풍부한 노동자들이 로봇의 일상적인 점검, 유지보수, 운영을 책임집니다. * 'AI 시스템 모니터링 및 평가자': 로봇의 생산 데이터를 모니터링하고, 로봇의 움직임이나 작업 결과가 비정상적일 때 이를 식별하고 평가하는 역할을 합니다. (예: "이 로봇의 용접 불량률이 높아지고 있다.") * '공정 데이터 라벨러 및 AI 트레이너': 숙련된 인간 노동자의 정교한 움직임과 문제 해결 과정을 데이터로 기록하고, 이를 AI가 학습할 수 있도록 가공(라벨링)합니다. 이는 AI 로봇의 완성도를 높이는 가장 중요한 '데이터 노동'이며, 기존 노동자들에게 새로운 고부가가치 직무를 제공합니다. 2. 노조의 역할: '저항의 주체'에서 '전환의 주체'로 노조는 고용 안정을 보장받는 대신, AI 도입에 협력하며 조합원들이 새로운 시대에 적응하도록 이끄는 역할을 맡습니다. ① 단계적 AI 도입 협력: * 회사가 제안한 '이익 공유' 및 '재교육' 계획을 신뢰하고, AI 로봇 도입 자체에 대한 반대를 철회합니다. 대신, 가장 위험하거나 반복적인 공정부터 로봇을 도입하는 '단계적 계획'을 회사와 함께 수립합니다. ② 재교육 프로그램 공동 설계 및 운영: * 회사가 제공하는 재교육 프로그램이 실효성이 있는지 감시하고, 현장 노동자들의 눈높이에 맞게 커리큘럼을 공동으로 설계하고 운영합니다. ③ '신(新)직무'에 대한 임금 및 단체 협약 체결: * 'AI 트레이너', '로봇 운영 전문가' 등 새롭게 만들어진 직무에 대한 적정한 임금 수준, 노동 조건, 권익 보호를 위한 새로운 단체 협약을 회사와 체결합니다. 노조의 역할이 '기존 일자리 사수'에서 '미래 일자리의 가치 창출 및 권익 보호'로 진화하는 것입니다. 3. 정부의 역할: '안전망' 제공과 '가속 페달' 지원 정부는 이 대타협이 원활하게 이루어지도록, 기업과 노조 양측 모두에게 인센티브를 제공하고 최후의 안전망을 구축합니다. ① 'AI 전환 투자 세제 혜택' 제공 (가속 페달): * 회사가 'AI 전환 기금'에 출연하는 금액과, 노동자 재교육에 투자하는 비용에 대해 파격적인 세액 공제 혜택을 줍니다. 이는 회사가 노동자를 해고하는 대신 재교육을 선택하도록 유도하는 강력한 당근이 됩니다. ② '전환기 고용보험' 적용 (안전망): * 불가피하게 전환 배치되지 못하는 소수의 노동자들을 위해, 일반 실업급여보다 더 긴 기간 동안, 더 높은 수준의 소득을 보장하는 특별 고용보험 프로그램을 적용합니다. 재취업 및 창업 지원도 병행합니다. ③ 국가적 '기본소득/기여 인센티브' 모델의 시범 사업으로 지정: * 이 자동차 공장의 사례를 국가 전체의 사회 시스템 전환을 위한 중요한 시범 사업으로 지정하고, 재교육 참여자나 신직무 종사자에게 국가 차원의 '기여 인센티브'를 추가로 제공하는 방안을 모색합니다. 결론 이러한 3자 파트너십을 통해, 노조의 선언은 더 이상 '위기'가 아닌 '기회'가 됩니다. 기업은 노사 갈등 없이 안정적으로 미래 경쟁력을 확보하고, 노동자들은 일자리를 잃는 대신 새로운 기술 시대의 주역으로 거듭나며, 정부는 사회적 혼란을 최소화하며 산업 구조 전환을 성공적으로 이끌 수 있습니다. 이는 AI 시대의 갈등을 해결하는 가장 현실적이고 상생 가능한 모델이 될 것입니다. 2026 01.28 은행앱 통합하면서 없어졌나보네요. ㄴ 비슷한 기능 찾으시는 분은 : 스마트 금융 계산기 검색해 보세요. https://play.google.com/store/apps/details?id=com.moneta.android.monetacalculator 2026 01.25 Ctrl+Z 를 이용해 뒤로 돌아기기 Undo 기능이 있는지 살펴보세요. 2026 01.23 쌀집계산기로 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 https://allcalc.org/56739 3. 'x' 값 구하기 계산기 조작법 목표: x = Dx / D = [(c×e) - (b×f)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 1 * 1 M+ : 메모리(M)에 1를 더합니다. (현재 M = 1) -0.1 * -0.2 M- : 메모리(M)에서 0.02를 뺍니다. (현재 M = 0.98 = 0.98) 이로써 메모리(MR)에는 분모 0.98가 저장됩니다. 2단계: 분자 Dx 계산 후 나누기 78000 * 1 : 78000를 계산합니다. = : GT에 더합니다. -0.1 * 200000 : -20000를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. // sign changer 버튼 사용 GT : GT를 불러옵니다. GT는 98000 (분자 Dx) 값입니다. ÷ MR = : 위 결과(98000)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 x값 100,000를 구합니다. 4. 'y' 값 구하기 계산기 조작법 목표: y = Dy / D = [(a×f) - (c×d)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 'x'에서와 분모는 동일하고 메모리(MR)에 0.98가 저장되어 있으므로 패스합니다. 2단계: 분자 Dy 계산 후 나누기 GT ± = : GT를 불러오고 부호를 뒤집어 GT에 더합니다. GT가 0으로 리셋됩니다. 【AC】를 누르면 M은 유지되고 GT만 리셋되는 계산기도 있으니 확인해 보세요. 1 * 200000 : 200000를 계산합니다. = : GT에 더합니다. 78000 * -0.2 : -15600를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. GT : GT를 불러옵니다. 215600 (분자 Dy) 값입니다. ÷ MR = : 위 결과(215600)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 y값 220,000를 구합니다. x, y 값을 이용해 최종 결과를 구합니다. 2026 01.18