- TI nspire
[TI-nspire] 행렬 eigVL 고유값, eigVC 고유벡터 구하기
1. 자동으로 고유값 & 고유벡터 찾는 방법
고유값 함수(eigVL())와, 고유벡터(eigVC()) 함수는 [TI-nspire]에 내장되어 있으므로, 손쉽게 구할 수 있습니다.
- 행렬 a = 라고 하면

- eigVl()로 구한 고유값의 순서와, eigvc()로 구한 고유벡터는 그 순서가 서로 매칭됩니다.
- eigVc()로 구한 고유벡터는 정규화(=크기가 1) 된 값입니다.
2. 수동으로 고유값(Eigen Value) 찾는 방법
- 3×3 행렬을 변수 a 에 저장하고, 행렬식을 이용해 고유 방정식(p(λ))을 찾습니다.
- solve 로 고유값을 찾습니다. 2(중근)와 4가 나왔습니다.

└ 보기 좋으라고 그리스 문자 λ 를 찾아서 넣었습니다만, 그냥 알파벳 a~z 를 써도됩니다.
3. 수동으로 고유벡터(Eigen Vector) 찾는 방법
- rref(a-고유값) 으로 벡터 성분(v1, v2, v3)간의 관계식을 구할 수 있습니다.
- 벡터 성분간 관계식을 만족하는 벡터를 구하면 고유벡터가 됩니다.
(따라서 고유벡터는 유일(unique)한 값을 가지지 않습니다.)

ㄴ 고유값이 중근이므로 두개의 고유 벡터를 찾아보았습니다.
- 이번엔 고유값 4에 대한 고유벡터를 구해봅니다.

├ 이번에는 하나의 고유벡터만을 찾았습니다.
└ eigVc(a) 의 결과값은 정규화된 값임을 확인할 수 있습니다.
댓글7
-
세상의모든계산기
행렬a-λ 를 하게되면 자동으로 λ에 Identity Matrix 가 강제로 곱해져 계산됩니다.
행렬a 모든 원소값에 스칼라값을 빼려면 빼기부호 앞에 .(dot) 을 붙여 주어야 합니다.
-
세상의모든계산기
symmetric 한 행렬에 a대해 eigvc(a) 를 구했을 때...
서로 직교하는 3개의 벡터가 되면 좋겠지만... 그렇게 구해주진 않네요.

-
세상의모든계산기
행렬의 대각화 diagonalization 예제

eigvl 값을 찾았다면 대각행렬(diag)을 만들 수 있고,
대각행렬은 요소가 간단해서 역행렬을 매우 쉽게 찾을 수 있음.
p 와 p의 역행렬 그리고 d의 역행렬을 이용해 a의 역행렬을 계산할 수 있음.
ㄴ 다만, TI-nspire 에서는 정규화된 p를 찾아줘서 복잡하게 보이는 경향이 있음.
-
1
세상의모든계산기
2×2 (대칭) 행렬의 예

1. 고유값 {3,1} 찾기
2. 대각행렬 da 정의
3. 고유값을 이용해 고유 벡터 찾기
4. 고유벡터로 p 행렬 정의 p:=[[1 1][1 -1]]
5. da 와 p 를 이용해 a의 역함수 계산

6. 최종적으로 하나의 해를 찾을 수 있는데...
-
2
세상의모든계산기
대칭 행렬 \( a \)의 고유값과 고유벡터를 이용하여 해를 구하는 과정에서 굳이 \( D^{-1} \), \( P \), \( P^{-1} \)를 모두 계산하지 않고도, 고유값 분해와 고유벡터를 이용해 연립방정식을 더 간단하게 풀 수 있습니다.
1. 고유값 분해: 행렬 \( a \)의 고유값이 3과 1로 주어졌고, 각각의 고유벡터가 \( x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \)와 \( x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \)입니다.
2. 벡터 \( b \)를 고유벡터로 분해:
우선, \( b = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \)를 두 고유벡터 \( x_1 \)과 \( x_2 \)의 선형 결합으로 표현합니다.
즉, \( b = c_1 x_1 + c_2 x_2 \)를 만족하는 \( c_1 \)과 \( c_2 \)를 구합니다.
- \( x_1 \)과 \( x_2 \)가 직교하므로, 내적을 통해 \( c_1 \)과 \( c_2 \)를 쉽게 구할 수 있습니다.
- \( c_1 = \dfrac{b \cdot x_1}{x_1 \cdot x_1} = \dfrac{4 \times 1 + 3 \times 1}{1^2 + 1^2} = \dfrac{4 + 3}{2} = \dfrac{7}{2} = 3.5 \)
- \( c_2 = \dfrac{b \cdot x_2}{x_2 \cdot x_2} = \dfrac{4 \times 1 + 3 \times (-1)}{1^2 + (-1)^2} = \dfrac{4 - 3}{2} = \dfrac{1}{2} = 0.5 \)
3. 해 \( x \) 구하기:
이제 고유값을 사용하여 \( x = \dfrac{c_1}{\lambda_1} x_1 + \dfrac{c_2}{\lambda_2} x_2 \)를 계산합니다.
- \( x = \dfrac{3.5}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0.5 \begin{bmatrix} 1 \\ -1 \end{bmatrix} \)
- 이를 계산하면:
$ x = \begin{bmatrix} \dfrac{3.5}{3} + 0.5 \\ \dfrac{3.5}{3} - 0.5 \end{bmatrix} $
따라서 연립방정식의 해는 \( x = \begin{bmatrix} \dfrac{5}{3} \\ \dfrac{2}{3} \end{bmatrix} \)입니다.
세상의모든계산기 님의 최근 댓글
기본 어댑터 MODEL : AD0301-1202500GB INPUT : 100~240V, 50~60Hz, 0.8A Max OUTPUT : 12.0V, 2.5A, 30.0W ㄴ 측정시 플러그 외경/내경 : 5.5mm / 2mm 2026 02.15 엑셀 파일로 만드니 전체 160~200MB 정도 나옵니다. 읽고 / 저장하는데 한참 걸리네요. 컴 사양을 좀 탈 것 같습니다. -> 엑셀/한셀에서 읽히지만, 구글 스프레드시트에서는 열리지 않네요. 100만 개 단위로 끊어서 20MB 정도로 분할해 저장하는 편이 오히려 속 편할 것 같습니다. -> 이건 구글 스프레드시트에서도 열리긴 하네요. (약간 버퍼링?이 있습니다) 2026 02.10 엑셀 / 행의 최대 개수, 열의 최대 개수, 셀의 최대 개수 엑셀의 행 개수 제한은 파일 형식에 따라 다르며, 최신 .xlsx 파일 형식은 시트당 최대 1,048,576행까지 지원하지만, 구형 .xls 파일은 65,536행으로 제한됩니다. 따라서 대용량 데이터를 다룰 때는 반드시 최신 파일 형식(.)으로 저장해야 하며, 행과 열의 총 수는 1,048,576행 x 16,384열이 최대입니다. 주요 행 개수 제한 사항: 최신 파일 형식 (.xlsx, .xlsm, .xlsb 등): 시트당 1,048,576행 (2^20). 구형 파일 형식 (.xls): 시트당 65,536행 (2^16). 그 외 알아두면 좋은 점: 최대 행 수: 1,048,576행 (100만여개) 최대 열 수: 16,384열 (XFD) 대용량 데이터 처리: 65,536행을 초과하는 데이터를 다루려면 반드시 .xlsx 형식으로 저장하고 사용해야 합니다. 문제 해결: 데이터가 많아 엑셀이 멈추거나 오류가 발생하면, 불필요한 빈 행을 정리하거나 Inquire 추가 기능을 활용하여 파일을 최적화할 수 있습니다. 2026 02.10 [일반계산기] 매출액 / 원가 / 마진율(=이익율)의 계산. https://allcalc.org/20806 2026 02.08 V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다. 이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다. 2026 02.04