- TI nspire
[TI-nspire cas] [라이브러리] laplace 라플라스 변환/역변환 2종
1. Library Specfunc
다운로드 (서버 에러인 듯) :
http://www.univers-ti-nspire.fr/activites.php?lang=&ress_id=82
아카이브 다운로드 :
http://web.archive.org/web/20200211031049/http://www.univers-ti-nspire.fr/activites.php?lang=&ress_id=82
사용 방법
specfunc.tns utils.tns 두개의 파일을 mylib 폴더에 복사해 넣으시고 사용하시면 됩니다.
자세한 사용법은 위 다운로드 링크에 동영상으로 나오니 참고하세요.
(동영상이 Adobe flash 라서 현재 재생이 불가능합니다)
- 2개의 파일(specfunc.tns, utils.tns)을 모두 계산기 My Documents\MyLib 폴더 안에 넣습니다.
- 새로운 문서(Ctrl+N) 또는 현재 문서로 가서 라이브러리를 Refresh 해 줍니다.
Doc - 6: Refresh Libraries
- Catalog 6: 탭에서 specfunc 와 utils 관련 함수가 떠 있으면 성공입니다. 잘 쓰시면 됩니다.

주의사항 : 삼각함수 취급할 때 각도는 항상 Rad 으로 설정하세요. Deg로 하면 버그납니다.
※ 참고예시 : https://seg-apps.etsmtl.ca/nspire/documents/transf%20Laplace%20prog.pdf
ㄴ 혹시 이것도 모르니 첨부 파일에 넣어둡니다.
2. Complex Analysis Functions
다운로드 :
http://www.ticalc.org/archives/files/fileinfo/451/45165.html
기능 :
Documentation
This page includes information on the arguments and output of the library's functions. Examples can be found on the next page.
cint(f,z,plist)
Computes the contour integral of the function f of the complex variable z whose interior includes the poles of f in the list plist. (See cpoles for more information) Returns a complex number.
cpoles(f,z)
Returns a list containing the locations of all the poles of the function f of the complex variable z.
invlapl(f,p,x)
Calculates the inverse Laplace transform of the function f of the real variable p. Returns the transformed function of the real variable x.
lapl(f,x,p)
Calculates the Laplace transform of the function f of the real variable x. Returns the transformed function of the real variable p.
residue(f,z,p)
Computes the residue of the function f of the complex variable z at the point p. (p can be the point at infinity)

댓글17
- 1
- 1
- 1
- 2
- 3
-
- 1
-
tinspirechoigo2021.12.11 - 22:25 #35995nspire cx cas2 인데 컴퓨터로 cx cas2 계산기프로그램으로 돌리면 되는데 계산기에서는 계속 function is not defined 라고 뜨네요 ㅠㅠ
- 1
-
세상의모든계산기
This library file contains a direct adaptation for TI-Nspire of the set of functions and programms of the package "Advanced Laplace 1.4" originally written by Lars FREDERICKSEN for Voyage 200.
Please, do consider that this file is just a beta-version.
The original version (for V200) is available on the page:
http://www.seg.etsmtl.ca/ti/laplace.html
[TI-Nspire] 기본 기능을 이용한 라플라스 변환
https://allcalc.org/50305
세상의모든계산기 님의 최근 댓글
V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다. 이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다. 2026 02.04 A) 1*3*5*7*9 = 계산 945 B) √ 12번 누름 ㄴ 12회 해도 되고, 14회 해도 되는데, 횟수 기억해야 함. ㄴ 횟수가 너무 적으면 오차가 커짐 ㄴ 결과가 1에 매우 가까운 숫자라면 된 겁니다. 1.0016740522338 C) - 1 ÷ 5 + 1 = 1.0003348104468 D) × = 을 (n세트) 반복해 입력 ㄴ 여기서 n세트는, B에서 '루트버튼 누른 횟수' 3.9398949655688 빨간 부분 숫자에 오차 있음. (소숫점 둘째 자리 정도까지만 반올림 해서 답안 작성) 참 값 = 3.9362834270354... 2026 02.04 1. 분모 먼저 계산 400 × 10000 = 100 × 6000 = GT 결과값 4,600,000 역수 처리 ÷÷== 결과값 0.00000021739 2. 분자 곱하기 ×3 00 00 00 ×4 00 ×1 00 00 최종 결과 = 2,608,695.65217 2026 02.04 해결 방법 1. t=-1 을 기준으로 그래프를 2개로 나누어 표현 ㄴ 근데 이것도 tstep을 맞추지 않으면 문제가 발생할 것기도 하고, 상관이 없을 것 같기도 하고... 모르겠네요. 2. t=-1 이 직접 계산되도록 tstep을 적절하게 조정 tstep=0.1 tstep=0.01 도 해 보고 싶지만, 구간 크기에 따라 최소 tstep 이 변하는지 여기서는 0.01로 설정해도 0.015로 바뀌어버립니다. 그래서 tstep=0.02 로 하는게 최대한 긴 그래프를 얻을 수 있습니다. 2026 02.02 불연속 그래프 ti-nspire는 수학자처럼 연속적인 선을 그리는 것이 아니라, 정해진 `tstep` 간격으로 점을 찍고 그 점들을 직선으로 연결하는 'connect-the-dots' 방식으로 그래프를 그립니다. 여기에 tstep 간격에 따라 특이점(분모=0)이 제외되어 문제가 나타난 것입니다. seq(−2+0.13*t,t,0,23) {−2.,−1.87,−1.74,−1.61,−1.48,−1.35,−1.22,−1.09,−0.96,−0.83,−0.7,−0.57,−0.44,−0.31,−0.18,−0.05,0.08,0.21,0.34,0.47,0.6,0.73,0.86,0.99} t=-1 에서 그래프를 찾지 않습니다. 그 좌우 값인 −1.09, −0.96 두 값의 그래프값을 찾고, Window 범위를 보고 적당히 (연속되도록) 이어서 그래프를 완성하는 방식입니다. 그래서 t=-1에서도 그래프 값이 존재하는 것입니다. 2026 02.02