- TI nspire
[TI-nspire CAS] Function - cSolve : 복소수 해 찾기

1. cSolve 란?
- cSolve 는 '복소수가 포함된 수식'이나 '복소수가 해인 수식'의 해를 찾는 함수입니다.
- 찾아진 해는 실수꼴일 수도 있고, 실수꼴이 아닐 수도 있습니다.
- cSolve 는 도메인이 real 로 설정된 상태이더라도, 일시적으로 도메인을 복소수로 지정합니다.
하지만, 복소수를 취급하실거면 rectangular 든 polar든 선택하시는 것이 좋습니다.
2. 사용 예 1 (방정식, 부등식)
- cSolve(Equation, Var) ⇒ Boolean expression
- cSolve(Equation, Var=Guess) ⇒ Boolean expression
- cSolve(Inequality, Var) ⇒ Boolean expression
3. 사용 예 2 (연립 방정식)
- cSolve(Eqn1 and Eqn2 [and…], VarOrGuess1, VarOrGuess2 [, … ]) ⇒ Boolean expression
- cSolve(SystemOfEqns, VarOrGuess1, VarOrGuess2 [, …]) ⇒ Boolean expression
- 모든 방정식(Eqn)이 다항식(polynomials)이고, 어떠한 초기 추정값도 지정되지 않았다면, cSolve 는 모든 복소수 해를 결정하기 위해 lexical Gröbner/Buchberger elimination method 를 사용합니다.
- 어떠한 방정식(Eqn)이라도 어떠한 변수에 대해 다항식이 아니(non-polynomial)고, 어떠한 초기 추정값도 지정되지 않았으며, 모든 방정식이 모든 해 변수들에 대해 리니어(linear)하다면, cSolve 는 모든 해를 결정하기 위해 Gaussian elimination 을 사용합니다.
- 계산 소요 시간이나 메모리 사용량은 해로 적어놓은 변수의 순서(order)에 매우 크게 영향을 받습니다. 만약 (무한 루프 등) 인내력의 한계에 도달하게 된다면, 방정식 내의 변수들이나 해로 지정한 변수 리스트를 재조정해보시는 것도 좋습니다.
- 연립 방정식 시스템이 모든 변수들에 대해 다항식도 아니고 해 변수들이 리니어하지도 않(non-linear)다면, cSolve는 최적의 해 하나를 찾기 위해 approximate iterative method 를 사용합니다.
조건 1 : '해 변수의 갯수' = '방정식의 갯수'
조건 2 : 방정식 내 모든 변수들이 숫자로 간소화될 수 있어야 함.
4. 주의사항
- cSolve 는 TI-nspire (non-CAS) 에서는 사용할 수 없습니다.
- OS 버전에 따라 cSolve 결과가 다를 수도 있습니다.
- Setting 에서
가급적(x)반드시(!) Angle=Radian 으로 바꿔두세요.
Degree 등일 때는 "Error: Domain error" 내지 "false" 오류가 발생할 수 있습니다. - 결과값의 표시 방법은 Document Setting - Real or Complex Format 에 영향을 받습니다.

x-y 직교좌표일 때는 Rectangular 를 선택하시는 것을 추천드리고,
r-θ 극좌표일 때는 Polar를 선택하시면 됩니다. 이 때는 Deg / Rad 에 또 영향을 받습니다. - solve와 비교하면 계산 시간이 오래 걸릴 수 있고, 재수가 없으면 무한 루프에 빠지기도 합니다.
이러한 사태를 방지하기 위해서는 초기값을 넣어주시면 해결될 수 있습니다.
approx로 계산해서 해결되기도 합니다.
5. 상세 설명

- solve와 달리 csolve는 실수해/복소수해 모두를 찾아줍니다.
- (이 예제에서) 'Solve 해집합' ⊂ 'cSolve 해집합' 성립
- 분모가 홀수인 분수 지수꼴에서는 'Solve 해집합' ⊂ 'cSolve 해집합'이 아닐 수 있음.

- cSolve 는 우선적으로 exact symbolic method 를 사용하지만, 경우에 따라 (알아서) 반복 근사법을 사용하기도 합니다.

- (복소수 연립방정식에서) 간혹 무한 루프에 빠지는 경우가 있습니다. (모래시계)
- 이 때는 【on】 버튼을 길게 눌러 연산을 강제로 멈추게(break, "Calculation Interrupted") 할 수 있습니다.
http://www.allcalc.org/4619 - 아니면 명령시부터 【ctrl】【enter】 를 이용해 반복 근사법만 계산하도록 강제할 수도 있습니다.
이 때 결과값은 소숫점 형태(Decimal Form)로만 표현됩니다. - 아니면 변수에 초기 추정값을 지정하는 방법을 사용할 수도 있습니다.
추정값은 실수나 복소수 모두 가능합니다.

- 변수(var)끝에 밑줄(underscore)을 붙이면, 변수_(var_) 는 복소수로 취급됩니다.
- 복소수해를 가질 가능성이 있는 수식에서는 모든 다른 변수들에도 밑줄을 붙여주는 편이 좋습니다.
그렇지 않으면 기대하지 않은 결과값을 찾을 가능성이 있습니다.


- 연립방정식은 값이 없는 추가 변수(c_)를 포함할 수 있고, 이것은 나중에 숫자로 치환될 수 있습니다.

- 수식에는 없는 변수(w_) 를 포함하는 해
- 여기서 c 는 constants 의 약자입니다. (뒤에 붙는 숫자는 1~255까지 순차적으로 결정됩니다.)

- Gaussian elimination
- Approximate iterative method
- 복소수 해를 결정하기 위해서, 종종 복소수 초기 추정값이 필요합니다.
댓글2
-
세상의모든계산기
csolve 와 무한 루프
[TI-nspire] 계산기 먹통(=무한 루프=모래 시계=무한 로딩) 강제종료 방법
https://allcalc.org/4619

무한루프 회피하려면?
ㄴ 초기값 입력 or approx 계산 【ctrl】【enter】하면 되는데,
이 경우에는 approx 계산방법으로는 해결되지 않네요.
세상의모든계산기 님의 최근 댓글
엑셀 파일로 만드니 전체 160~200MB 정도 나옵니다. 읽고 / 저장하는데 한참 걸리네요. 컴 사양을 좀 탈 것 같습니다. -> 엑셀/한셀에서 읽히지만, 구글 스프레드시트에서는 열리지 않네요. 100만 개 단위로 끊어서 20MB 정도로 분할해 저장하는 편이 오히려 속 편할 것 같습니다. -> 이건 구글 스프레드시트에서도 열리긴 하네요. (약간 버퍼링?이 있습니다) 2026 02.10 엑셀 / 행의 최대 개수, 열의 최대 개수, 셀의 최대 개수 엑셀의 행 개수 제한은 파일 형식에 따라 다르며, 최신 .xlsx 파일 형식은 시트당 최대 1,048,576행까지 지원하지만, 구형 .xls 파일은 65,536행으로 제한됩니다. 따라서 대용량 데이터를 다룰 때는 반드시 최신 파일 형식(.)으로 저장해야 하며, 행과 열의 총 수는 1,048,576행 x 16,384열이 최대입니다. 주요 행 개수 제한 사항: 최신 파일 형식 (.xlsx, .xlsm, .xlsb 등): 시트당 1,048,576행 (2^20). 구형 파일 형식 (.xls): 시트당 65,536행 (2^16). 그 외 알아두면 좋은 점: 최대 행 수: 1,048,576행 (100만여개) 최대 열 수: 16,384열 (XFD) 대용량 데이터 처리: 65,536행을 초과하는 데이터를 다루려면 반드시 .xlsx 형식으로 저장하고 사용해야 합니다. 문제 해결: 데이터가 많아 엑셀이 멈추거나 오류가 발생하면, 불필요한 빈 행을 정리하거나 Inquire 추가 기능을 활용하여 파일을 최적화할 수 있습니다. 2026 02.10 [일반계산기] 매출액 / 원가 / 마진율(=이익율)의 계산. https://allcalc.org/20806 2026 02.08 V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다. 이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다. 2026 02.04 A) 1*3*5*7*9 = 계산 945 B) √ 12번 누름 ㄴ 12회 해도 되고, 14회 해도 되는데, 횟수 기억해야 함. ㄴ 횟수가 너무 적으면 오차가 커짐 ㄴ 결과가 1에 매우 가까운 숫자라면 된 겁니다. 1.0016740522338 C) - 1 ÷ 5 + 1 = 1.0003348104468 D) × = 을 (n세트) 반복해 입력 ㄴ 여기서 n세트는, B에서 '루트버튼 누른 횟수' 3.9398949655688 빨간 부분 숫자에 오차 있음. (소숫점 둘째 자리 정도까지만 반올림 해서 답안 작성) 참 값 = 3.9362834270354... 2026 02.04