- TI nspire
[TI-nspire] Error: Invalid implied multiply 에러 : 곱하기의 부적절한 생략
1. 증상
증상1) Error 메시지 출력 : Invalid implied multiply
증상2) 에러 메시지 없이 입력식이 그대로 결과로 출력
└ 사진 출처 : http://kin.naver.com/qna/detail.nhn?d1id=11&dirId=1114&docId=240248248&ref=me3lnk
증상3) 그래프 모드에서는 그래프가 그려지지 않음
그래프가 그려지지 않습니다.
그래프가 그려지지 않습니다.
2. 에러 메시지 설명
아주 흔하게 마주치는 에러 메시지 중 하나입니다. 곱하기가 생략되지 않아야 하는데 잘못 생략되었다는 뜻입니다.
[TI-nspire] 계산기는 변수명과 함수명을 별도로 구분하지 않고 함께 사용합니다. 때문에 문자 뒤에 바로 괄호가 붙으면 문자를 변수가 아닌 함수로 강제인식하게 됩니다.
3. 해결방법
문자와 괄호 사이에 생략된 곱하기를 다시 입력합니다.
4. 비고
"Error: Name is not a function"
문자에 이미 다른 숫자가 저장되어 variable Type 으로 이미 정의된 경우에는 에러 메시지가 이렇게 달라집니다. (본문의 상황은 문자가 아무런 Type 으로도 정의되지 않은 경우에 발생합니다.)
문자와 문자 사이
문자변수 x와 y 사이에 곱하기를 생략하여 xy 를 입력하는 때에도 같은 유사한 문제가 발생합니다.
이 때에는 괄호가 없어서 함수가 호출되는 것은 아닙니다. 따라서 에러메시지는 나오지 않습니다만, 두개의 변수로 나뉘어 인식되어야 할 것이, 하나의 새로운 변수처럼 취급되므로 계산 결과가 제대로 나올 수 없습니다.
https://allcalc.org/23006
세상의모든계산기 님의 최근 댓글
다항식 나눗셈 (가장 정석적인 방법) (피제수, 나뉠 식) r1*r3 를 (제수, 나누는 식) r1+r3 로 직접 나누며, 여기서 r1을 변수로 취급합니다. 1. 몫 구하기: r1*r3 (나뉠 식)의 최고차항을 r1+r3 (나누는 식)의 최고차항 r1로 나눕니다. (r1*r3) / r1 = r3 <-- 이것이 몫(Quotient)이 됩니다. 2. 나머지 구하기: (원래 분자) - (몫 × 분모) 를 계산합니다. (r1*r3) - (r3 × (r1+r3)) = r1*r3 - (r1*r3 + r3^2) = -r3^2 <-- 이것이 나머지(Remainder)가 됩니다. 3. 결과 조합: 최종 결과는 `몫 + (나머지 / 나누는 식)` 형태로 씁니다. r3 + (-r3^2 / (r1+r3)) \[ \begin{array}{l} \phantom{r_1+r_3 \overline{) r_1 r_3}} r_3 \\ r_1+r_3 \overline{) \begin{array}[t]{@{}r@{}} r_1 r_3 \phantom{+r_3^2} \\ - (r_1 r_3 + r_3^2) \\ \hline -r_3^2 \\ \end{array}} \end{array} \] 2025 10.14 부분적 과정으로 분자(변수의 곱)를 다른 변수로 치환할 수 있다면 (r1*r3=a, r2*r4=b) 다항식에서도 강제 나눗셈 과정을 막을 수 있겠습니다만, 원래의 식에 적용시킬 수는 없어 의미가 없겠습니다. 2025 10.14 (r1*r3) / (r1+r3) 에서 원래라면 분자(r1*r3)에서 하나의 변수를 선택하여 그것을 기준으로 분모를 나누고 몫과 나머지로 분리하여 표현하는 것이 기본 원칙입니다만, 결과가 단항인 분수식일 경우 분자가 두 변수의 곱으로 표현되더라도 그것이 더 간단한 표현인 것으로 보고 그대로 두는 듯 합니다. 하지만 마지막 예시에서 보이는 것처럼 +1만 붙는 간단한 형식일지라도 다항식이 되는 순간 원래의 기본 원칙대로 대수의 나눗셈(r1*r3를 (r1+r3)로 나눔)이 강제 진행되어버리고 이를 막을 수 없는 듯 합니다. 2025 10.14 낮에 TV에서 영화 '말모이' 해주더라구요. 그래서 한번 물어 봤습니다. 2025 10.10 마지막 발언이 마지막 힌트이자 문제의 핵심이군요. 처음 들은 달이 8월이었다면 (15일인지 17일인지 확신할 수 없어서) 마지막 대사를 할 수 없지만, 처음 들은 달이 7월이었다면 (선택지가 16일 하나라서 확신이 가능하므로) 마지막 대사를 할 수 있다. 대사를 했으니 7월이다. 이제 이해되었습니다. 지금 보니까 이해가 되는데, 당시에는 왜 이해가 안됐을까요? 세가지 전제 하에 문제를 풀면 A는 마지막 대화 2줄만으로 C의 생일을 알 수 없어야 정상인데, 무슨 이유에서인지 "그럼 나도 앎!"이라고 선언해 버립니다. 알게 된 이유를 대화 속에서 찾을 수는 없습니다. 이 편견에 사로잡혀 빠져나오지 못하고 다른 길로 계속 샜나봅니다. 2025 10.09