- CASIO 570
[fx-570] 복소수 1차 연립방정식 해법 (feat. 반복법 Gauss-Seidel Method)
1. EQN 및 행렬 기능의 한계
[fx-570ES PLUS] 계산기에는 연립방정식의 해를 구하는 EQN 기능이 있습니다만, 계수 및 해의 범위는 실수로 한정됩니다.
행렬(Matrix) 모드에서도 element에는 실수만 입력시킬 수 있습니다. 게다가 최대 행렬은 3×3 까지만 가능...ㅠㅠ
따라서, [fx-570ES (Plus)]에서 계산기 내장기능만으로는 계수나 해가 복소수인 연립방정식을 풀 수가 없습니다.
역행렬 공식을 (암기) 활용하여 구하는 방법은 있습니다.
https://allcalc.org/43763
2. 반복법 (Gauss-Seidel Method)
하지만 반복법인 가우스-자이델 법을 이용하면 복소수의 해를 찾을 수(도) 있습니다. 실수에 대한 연립방정식을 반복법으로 풀었던 것과 동일합니다.
[fx-570] Iteration, Gauss-Seidel 가우스-자이델 법으로 연립방정식 풀기
원래의 수식을 미지수에 대해 각각 손으로 정리할 필요가 있어서, 번거롭습니다.
실수일 때에 비해 입력실수가 더 잦은 편이므로, 시간낭비를 하기 싫으시면 매우 꼼꼼하게 확인하시는게 좋습니다.
수렴해야 답이 나오는데, 오히려 발산하는 경우도 있습니다.
발산하는 경우 실수에서와 마찬가지로, 정리하는 변수의 순서를 바꾸면 답이 나올 수도 있습니다.
(행렬로 봤을 때) 대각행렬의 위치에 해당하는 계수의 크기(Abs)가 (행에서) 가장 큰 값이 되도록 행의 배치를 바꾸시면 됩니다.
결국은 매우 비실용적인 방법이므로 (입력이 수월한)
실험삼아 상급 계산기에서나 한번쯤 해볼만한 방법입니다.
3. 예시
다음 두 식을 만족시키는 복소수 v1 과 v2를 구해보겠습니다.
(0.2+0.2*i)v1 - (0.1*i)v2 = 1
−(0.1*i)v1 + (0.1-0.1*i)v2 = 0.5*i
- 윗 식은 v1에 대하여, 아랫 식은 v2에 대하여 손으로 정리합니다.
((1+0.1*i*v2)/(0.2+0.2*i))→v1
((0.5*i+0.1*i*v1)/(0.1-0.1*i))→v2
- 복소수 모드로 이동합니다.
【MODE】 【2】
- V1을 A로, V2를 B로 치환하고
A=ㅁㅁㅁ:B=△△△ 꼴로 계산기에 입력합니다.

- 【CALC】 버튼을 눌러서 계산을 시작합니다.
ㄴ
【CALC】 대신 【=】 를 누르면 Error 가 납니다.
- B? (B값을 묻는 화면)에서 B의 초기값을 입력합니다.
【0】 【=】
- 【=】 반복하여 누릅니다.
A, B 값이 특정 값에 수렴할 때까지 반복합니다.

- 위에서 식을 입력할 때 두 식을 나누어 입력할 수도 있습니다.
(더 복잡하고 번거롭기 때문에 굳이 그럴 이유는 없습니다)
- 복소수 계산 모드로 이동합니다.
【MODE】 【2】
- A의 초기값을 입력합니다.
【0】 【SHIFT】 【RCL】 【(-)】
ㄴ B의 초기값은 입력할 필요가 없습니다.
- A, B 로 대치하여 그대로 계산기에 입력하고 【=】 계산합니다.

앞서 계산한 두개의 식을 번갈아가면서 교대로 실행해야 하므로
【▲】 【=】 【▲】 【=】
【▲】 【=】 【▲】 【=】
... 를 반복하여 입력합니다.
언제까지?
결과가 어떤 수에 수렴할 때까지...
18회를 반복하니 (=36회의 계산) 답이 나옵니다.

세상의모든계산기 님의 최근 댓글
V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다. 이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다. 2026 02.04 A) 1*3*5*7*9 = 계산 945 B) √ 12번 누름 ㄴ 12회 해도 되고, 14회 해도 되는데, 횟수 기억해야 함. ㄴ 횟수가 너무 적으면 오차가 커짐 ㄴ 결과가 1에 매우 가까운 숫자라면 된 겁니다. 1.0016740522338 C) - 1 ÷ 5 + 1 = 1.0003348104468 D) × = 을 (n세트) 반복해 입력 ㄴ 여기서 n세트는, B에서 '루트버튼 누른 횟수' 3.9398949655688 빨간 부분 숫자에 오차 있음. (소숫점 둘째 자리 정도까지만 반올림 해서 답안 작성) 참 값 = 3.9362834270354... 2026 02.04 1. 분모 먼저 계산 400 × 10000 = 100 × 6000 = GT 결과값 4,600,000 역수 처리 ÷÷== 결과값 0.00000021739 2. 분자 곱하기 ×3 00 00 00 ×4 00 ×1 00 00 최종 결과 = 2,608,695.65217 2026 02.04 해결 방법 1. t=-1 을 기준으로 그래프를 2개로 나누어 표현 ㄴ 근데 이것도 tstep을 맞추지 않으면 문제가 발생할 것기도 하고, 상관이 없을 것 같기도 하고... 모르겠네요. 2. t=-1 이 직접 계산되도록 tstep을 적절하게 조정 tstep=0.1 tstep=0.01 도 해 보고 싶지만, 구간 크기에 따라 최소 tstep 이 변하는지 여기서는 0.01로 설정해도 0.015로 바뀌어버립니다. 그래서 tstep=0.02 로 하는게 최대한 긴 그래프를 얻을 수 있습니다. 2026 02.02 불연속 그래프 ti-nspire는 수학자처럼 연속적인 선을 그리는 것이 아니라, 정해진 `tstep` 간격으로 점을 찍고 그 점들을 직선으로 연결하는 'connect-the-dots' 방식으로 그래프를 그립니다. 여기에 tstep 간격에 따라 특이점(분모=0)이 제외되어 문제가 나타난 것입니다. seq(−2+0.13*t,t,0,23) {−2.,−1.87,−1.74,−1.61,−1.48,−1.35,−1.22,−1.09,−0.96,−0.83,−0.7,−0.57,−0.44,−0.31,−0.18,−0.05,0.08,0.21,0.34,0.47,0.6,0.73,0.86,0.99} t=-1 에서 그래프를 찾지 않습니다. 그 좌우 값인 −1.09, −0.96 두 값의 그래프값을 찾고, Window 범위를 보고 적당히 (연속되도록) 이어서 그래프를 완성하는 방식입니다. 그래서 t=-1에서도 그래프 값이 존재하는 것입니다. 2026 02.02