[ticalc.org 펌] Gamma & Zeta function +more. 감마 제타 함수 외
원본 출처
https://www.ticalc.org/archives/files/fileinfo/415/41529.html
Gamma ver 1.3. by Mauritz Blomqvist (for the Nspire CAS)
This small package does contain implementations of some various special functions like the Gamma function and the Reimann Zeta function.
Some of the functions will return exact values in special cases.
The algorithms are based on information from the Gnu C Scientific library, from NUMERICAL RECIPES, The Art of Scientific Computing, Third Edition, from http://mathworld.wolfram.com/, from various documents mentioned in the files and from own ideas and algorithms.
This version is greatly extended from the version 1.1. In that version I also forgot to set some variables to LibPriv, which meant that some functions did not work outside this library. The basic difference between this version and version 1.2 is the addition of functions related to the Riemann Zeta function.
A suggestion is that you place this in a map under MyLib. Do not forget to update the library access.
Please report errors or comments to me at MauritzTortoise…telia.com where …=@.
설명 번역 :
✦ Mauritz Blomqvist의 감마 버전 1.3 (현재 CAS 및 비 CAS 버전 제공)
이 작은 패키지에는 감마 함수, 리만 제타 함수 및 관련 함수와 같은 다양한 특수 함수의 구현이 포함되어 있습니다. 대부분의 함수에 대해 복소수 인수를 처리할 수 있습니다.
gamma.tns 파일은 CAS용이고 gammanc.tns는 비 CAS용입니다. CAS 버전은 gamma(7/2)와 같은 일부 특수한 경우에 정확한 값을 반환합니다.
함수 소개 번역
✦ Gamma and related functions
gamma(z)
이 작은 패키지는 감마 함수 계산을 위한 란초스 근사(Lanczos approximation) 구현을 포함합니다. 실수 및 복소수 입력 모두에 대해 상당히 정확한 값을 반환합니다.
수식은 다음과 같습니다:
Γ(z)=gamma(z)≡∫(t^(z-1)*e^(-t),t,0,∞)
실수부와 허수부 모두 평균 0, 표준편차 30인 정규분포를 따르는 1000개의 숫자로 테스트한 결과, 상대 오차는 대부분 실수부와 허수부 모두에서 1E-10 이하 수준이었습니다. 가장 큰 상대 오차는 약 4E-8이었습니다.
이 함수는 양의 정수와 ½의 배수에 대해 정확한 값을 반환합니다.
gamma(3.5) 3.323350970447
gamma(((7)/(2))) ((15*√(π))/(8))
gamma(3.) 2.
gamma(3) 2
gamma(((−7)/(2))) ((16*√(π))/(105))
gamma(1+2i) 0.15190400267+0.019804880162*i
gamma(30) 8841761993739701954543616000000
gamma(30.) 8.84176199374E30
------
lngamma(z)
감마의 자연로그입니다. 감마 함수에 큰 인수가 필요할 때 사용할 수 있습니다.
아래 답변은 최소 유효 숫자의 한 단위 내에서 정확합니다.
lngamma(10000) 82099.7174964
일반 감마 함수는 이처럼 큰 입력을 처리할 수 없습니다.
ln(gamma(10000)) ln(9999!)
lngamma(20) ln(5773625)+2*ln(145152)
------
digamma(z)
감마의 로그 미분입니다. 즉, (d/dz)(lngamma(z))입니다.
digamma(1) −0.577215664901
이것은 -γ(오일러-마스케로니 상수)입니다.
-γ −0.577215664902
------
dergamma(z)
감마의 미분입니다.
dergamma(10) 817115.979521
------
doublefactorial(n)
이중 계승(double factorial)입니다. n!!=n*(n-2)*....
doublefactorial(8) 384
doublefactorial(7) 105
------
lowerigamma(a,z)
하 불완전 감마 함수(lower incomplete gamma)를 계산합니다:
γ(a,z)≡∫(t^(a-1)*e^(-t),t,0,z).
------
upperigamma(a,z)
상부 불완전 감마 함수(upper incomplete gamma)를 계산합니다:
Γ(a,z)≡∫(t^(a-1)*e^(-t),t,z,∞).
upperigamma(3,2) 10*e^(−2)
lowerigamma(3,2)+upperigamma(3,2) 2.
upperigamma(10,((3)/(2)))
((832670037*e^(((−3)/(2))))/(512))
------
p(a,z)
정규화된 하부 불완전 감마 함수(regularized incomplete lower gamma)를 계산합니다.
((γ(a,z))/(Γ(a))).
------
q(a,z)
정규화된 상부 불완전 감마 함수(regularized incomplete upper gamma)를 계산합니다.
((Γ(a,z))/(Γ(a))).
------
invp(pr,a)
p의 역함수입니다.
invp(p(2.2,3.4),2.2) 3.4
------
erf(z)
오차 함수(error function)입니다. 불완전 감마 함수를 기반으로 하며, 내장된 normCdf 함수를 기반으로 하는 것보다 정확도가 더 높습니다.
erf(1.3) 0.934007944941
2*normCdf(−∞,1.3*√(2),0,1)-1 0.934008064885
첫 번째 결과는 올바르게 반올림된 답, 즉 12개의 유효 숫자를 반환합니다. 마지막 결과는 6개의 유효 숫자만 반환합니다.
------
errfc(z)
여오차 함수(complementary error function)입니다.
------
inverf(x)
오차 함수의 역함수입니다.
erf(inverf(0.5)) 0.5
------
beta(x,y)
베타 함수입니다.
------
gammaintegrand(z,t)
감마 함수의 정의에 사용되는 피적분 함수입니다.
gammaintegrand(z,t) t^(z-1)*e^(−t)
------
m(a,b,z)
쿠머(Kummer)의 합류 초기하 함수(confluent hypergeometric function)입니다.
이는 γ(a,x)=((z^(a)*e^(−z)*m(1,a+1,z))/(a)) 관계식을 통해 아래 불완전 감마 함수를 계산하는 다른 방법을 제공합니다.
이것은 lowerigammam(a,z)으로 구현되어 있습니다.
이것은 또한 복소수 인수에 대한 불완전 감마를 계산하는 데 사용될 수 있습니다.
lowerigammam(2,3+2i ) 0.992332417697+0.222522474629*i
lowerigamma와 upperigamma에서 인수가 복소수일 때 사용됩니다.
✦ 몇 가지 관련 확률 함수
먼저 감마 분포와 관련된 몇 가지 함수입니다.
gammapdf(x,k,θ)
: 감마 확률 밀도 함수(Gamma Probability Density Function)
gammacdf(x,k,θ)
: 감마 누적 분포 함수(Gamma Cumulative Distribution Function)
invgammacdf(pr,k,θ)
: 역 감마 누적 분포 함수(Inverse Gamma Cumulative Distribution Function)
------
ncdf(x,μ,σ)
NormCdf(−∞,x,μ,σ)와 동일하지만, 정확도가 더 높습니다 (그리고 더 느립니다).
오차 함수 erf(z)를 사용하여 계산되며, 이는 다시 불완전 감마 함수를 사용합니다.
일반적인 입력값에 대해 내장 함수는 약 8개의 유효 숫자를 제공하는 반면, 이 함수는 기본적으로 최소 유효 숫자의 몇 부분에 해당하는 오차만을 가집니다.
------
invn(x,μ,σ)
InvNorm(x,μ,σ)와 동일하지만, 정확도가 더 높습니다 (그리고 더 느립니다).
✦ 리만 제타 함수 및 관련 함수
zeta(s)
이 함수는 리만 제타 함수를 계산하며, 보와인(Borwein) 알고리즘을 기반으로 합니다.
정수에 대해 다음 식이 성립합니다.
ζ(s)=∑(((1)/(k^(s))),k,1,∞)
그리고 s=1에서의 극점(pole)을 제외한 전체 복소 평면으로 확장하면 다음과 같습니다.
ζ(s)=((1)/(Γ(s)))*∫(((t^(s-1))/(e^(t)-1)),t,0,∞)
실제로 이 수식으로 계산할 수도 있지만, 매우 느리고 정확도도 매우 낮을 것입니다.
------
zetazero(t)
이 함수는 추측값 t 근방의 임계선(critical line) 상에서 근(root)을 찾으려고 시도합니다.
이것이 첫 번째 근입니다:
zetazero(14) 14.1347251417
zeta(0.5+14.1347251417*i) 4.E−12-3.E−11*i
즉, 0에 매우 가깝습니다.
------
rszeta(s)
이 함수 또한 리만 제타 함수를 계산하지만, 정확도는 낮지만 더 빠르며, 주로 임계대(critical strip)에서 사용하기 위한 것입니다. 리만-지겔(Riemann-Siegel) 공식을 사용합니다.
------
eta(s)
디리클레 에타 함수(Dirichlet Eta function) 또는 교대 제타 함수(alternate zeta function)입니다.
ε(s)=∑((((−1)^(k-1))/(k^(s))),k,1,∞)
------
sterl2(n,k)
제2종 스털링 수(Sterling numbers of the second kind)입니다. n개의 원소를 가진 집합을 k개의 비어있지 않은 집합으로 분할하는 방법의 수입니다.
------
bernoulli(n)
이 함수는 제2종 스털링 수를 사용하여 다소 비효율적인 방식으로 n번째 베르누이 수를 계산합니다.
------
harm(z)
이 함수는 조화 합(harmonic sum)을 반환합니다. 100 미만의 양의 정수에 대해서는 정확한 답을 반환합니다. 다른 값에 대해서는 디감마(digamma) 함수를 사용하여 매우 정확한 근사값을 계산합니다.
이 패키지에는 다음 함수도 포함되어 있습니다:
sgn(x)
내장된 부호 함수(signum function)와 달리, 이 함수의 sgn(0)은 0을 반환합니다.
fib(z)
피보나치 수열의 수를 반환합니다. 이 함수는 복소수 영역으로 확장되었습니다.
sterling(x)
계승(factorial)에 대한 스털링 근사(Sterling approximation)입니다.
오일러-감마 상수
γ=0.57721566490153

댓글2
-
세상의모든계산기
500! 의 십진수 근사값 확인

500! = 1.22013682599111006870123878542304692625357434280319284219241358838 × 10^(1134) (참값, 울프람 알파)
세상의모든계산기 님의 최근 댓글
3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은 조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요. 100÷7 = 14.285714285714285714285714285714 소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다. 2025 12.30 그럼 해가 무한히 많은지 아닌지 어떻게 아느냐? 고등학교 수학 교과과정에 나오는 행렬의 판별식(d, determinant)을 이용하면 알 수 있습니다. ㄴ 고교과정에서는 2x2 행렬만 다루던가요? 연립방정식의 계수들로 행렬을 만들고 그 행렬식(determinant)을 계산하여야 합니다. 행렬식이 d≠0 이면 유일한 해가 존재하고, d=0 이면 해가 없거나 무수히 많습니다. * 정상적인 경우 (`2y + 8z = 115`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 8 | 행렬식 값 = 1(0 - (-7)) - 1(8 - 0) = 7 - 8 = -1 (0이 아니므로 유일한 해 존재) * 문제가 된 경우 (`2y + 7z = 100`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 7 | 행렬식 값 = 1(0 - (-7)) - 1(7 - 0) = 7 - 7 = 0 (0이므로 유일한 해가 존재하지 않음) 2025 12.30 좀 더 수학적으로 말씀드리면 (AI Gemini 참고) 수학적 핵심 원리: 선형 독립성(Linear Independence) 3원 1차 연립방정식에서 미지수 x, y, z에 대한 단 하나의 해(a unique solution)가 존재하기 위한 필수 조건은 주어진 세 개의 방정식이 서로 선형 독립(linearly independent) 관계에 있어야 한다는 것입니다. * 선형 독립 (Linearly Independent): 어떤 방정식도 다른 방정식들의 조합(상수배를 더하거나 빼는 등)으로 만들어질 수 없는 상태입니다. 기하학적으로 이는 3개의 평면(각 방정식은 3D 공간의 평면을 나타냄)이 단 한 개의 점(해)에서 만나는 것을 의미합니다. * 선형 종속 (Linearly Dependent): 하나 이상의 방정식이 다른 방정식들의 조합으로 표현될 수 있는 상태입니다. 이 경우, 새로운 정보를 제공하지 못하는 '잉여' 방정식이 존재하는 것입니다. 기하학적으로 이는 3개의 평면이 하나의 선에서 만나거나(무수히 많은 해), 완전히 겹치거나, 혹은 평행하여 만나지 않는(해가 없음) 상태를 의미합니다. 질문자님의 사례는 '선형 종속'이 되어 무수히 많은 해가 발생하는 경우입니다. 2025 12.30 질문하신 연립 방정식은 미지수가 3개이고 모두 1차인 3원 1차 연립방정식입니다. 이상적으로 문제가 없다면 {x,y,z} 에 대한 좌표가 하나 나오게 됩니다. 원하는 답 {52.5, -2.5, 15} 그런데 두개 조건(식)을 그대로 두고 나머지 하나를 변형하다 보니 원하는 답이 나오지 않는 상황이 발생하였다고 질문하신 상황입니다. 3개의 조건식이 주어진 3원 1차 연립방정식은 조건을 변형해서 하나의 변수를 제거할 수 있습니다. 그러면 2개의 조건식으로 주어지는 2원 1차 연립방정식으로 변형할 수 있습니다. (알아보기 더 쉬워서 변형하는 겁니다) 변경하지 않은 조건의 식(con1) 을 이용해 하나의 y & z 1차 방정식을 유도할 수 있는데요. 나머지 방정식이 con1에서 유도된 방정식과 동일해지면 하나의 답이 구해지지 않는 것입니다. 계산기(ti-nspire)는 {x,y,z} 의 답이 하나가 아니고 무수히 많음을 c1 을 이용해서 표현해 준 것입니다. linear_independence_cond12.tns 2025 12.30