- TI nspire
[TI-Nspire] 기본 기능을 이용한 라플라스 변환
한국어로 번역한 문서 https://allcalc.org/50260 를 TI-Nspire 용으로 추가 가공한 문서입니다.

소개
TI 계산기에는 라플라스 변환과 역변환을 계산하기 위한 미리 프로그래밍된 함수가 없습니다.
하지만 여러 웹사이트에서 이를 제공합니다 :
역자 주) TI-nspire 용으로 컨버팅 해당 문서는 https://allcalc.org/5003 입니다.
여기서 우리가 제안하는 것은, "TI의 기본 함수만을 사용하여도 충분히 잘 해낼 수 있다는 것을 보여주는 것"입니다.
라플라스 변환
먼저 라플라스 변환은 매개변수 s의 특정 값에 대해 수렴하는 이상적분임을 주목해야 합니다:
$ f\left( t\right) \leftrightarrow F\left( s\right) \equiv \int _{0}^{\infty }f\left( t\right) \cdot e^{-s\cdot t}dt $

TI는 s에 대한 도메인이 지정되지 않으면 정의할 수 없습니다. (그림 1).∫(e^(−s*t),t,0,∞)|s>0
라플라스 변환을 함수로 정의할 수 있습니다.

하지만 TI-89와 달리 제약연산자(|) 를 한꺼번에 넣어서 정의하면 조각함수(piecewise function) 로 바뀌면서 오류가 발생합니다.
따라서 TI-nspire에서는 제약연산자 부분을 함수정의와 분리하고, 다시 함수와 결합해 사용해야 하는 불편함이 있습니다.
TI-89 에서는 위의 la(f,t,s) 함수의 수렴이 느려서 Lim 함수를 결합한 lala(f,t,s) 함수라는 대안을 찾았지만,
TI-nspire 에서는 속도가 충분히 빨라졌기 때문에 속도 때문에 대안을 찾을 필요는 없고,
다만 TI-89 에서 찾은 대안을 Nspire에서 사용하면 제약 연산자를 재결합해서 사용하지 않아도 되기 때문에
TI-nspire 에서도 유용한 대안이 됩니다.
* 여기서는 lala(f,t,s) 대신 lapl(f,t,s) 라는 함수명을 사용하겠습니다.

ㄴ lapl(f,t,s) := −lim(∫(f*e^(−s*t),t),t,0,1)
무한대에서의 값이 0이 됨을 이용하여 부적절한 적분(undef)을 피할 수 있습니다.
실제로, 라플라스 변환을 계산하는 함수들은 지수 차수입니다. 이는 s를 충분히 크게 선택하면
$ \lim _{t\rightarrow \infty }f\left( t\right) \cdot e^{-s\cdot t}=0 $ 을 얻게 된다는 것을 의미합니다.
부정적분 을 계산한 후에는 (f가 모든 곳에서 연속이고 TI가 적분 상수를 추가하지 않는다고 가정하면)
$ \int f\left( t\right) \cdot e^{-st}dt $ 라고 하면 됩니다.
극한은 t = 0에서의 평가가 0의 오른쪽에서 계산되어야 한다는 사실에서 비롯됩니다.
이제 훨씬 더 심각한 문제인 역변환을 다루겠습니다.
역 라플라스 변환
$ F\left( s\right) =\dfrac{1}{\left( s-2\right) ^{2}\cdot \left( s^{2}+6s+13\right) } $
의 역변환 계산을 고려해 봅시다.
여기서는 제곱 완성을 수행해야 합니다: 부분 분수 전개 전에 이를 수행하는 것이 좋습니다(그림 3).

변환 표에서 다음과 같은 대응관계를 알아야 합니다:
$ \dfrac{s+a}{\left( s+a\right) ^{2}+b^{2}}\leftrightarrow e^{-at}\cos bt,\dfrac{b}{\left( s+a\right) ^{2}+b^{2}}\leftrightarrow e^{-at}\sin bt $
$ \dfrac{1}{s+a}\leftrightarrow e^{-at}\text{ and }\dfrac{1}{\left( s+a\right) ^{2}}\leftrightarrow t\cdot e^{-at} $
따라서 답은
$ f\left( t\right) =\dfrac{10e^{-3t}\cos 2t}{841}+\dfrac{21e^{-3t}\sin 2t}{1682}-\dfrac{10e^{2t}}{841} +\dfrac{t \cdot e^{2t}}{29} $
입니다.
컨볼루션으로도 진행할 수 있습니다:
컨볼루션 속성에 따르면 F(s) = X(s) H(s)인 경우,
$ \text{with } F\left( s\right) \leftrightarrow f\left( t\right), X\left( s\right) \leftrightarrow x\left( t\right) \text{ and } H\left( s\right) \leftrightarrow h\left( t\right), $
$ \text{then } f\left( t\right) = x\left( t\right) \ast h\left( t\right) \equiv \int _{0}^{t}x\left( \tau \right) h\left( t-\tau \right) d\tau $
입니다.
여기서 우리는 다음 식을 얻습니다. :
$ F\left( s\right) =\dfrac{1}{\left( s-2\right) ^{2}\cdot \left( s^{2}+6s+13\right) } $
$ =\left( \dfrac{1}{\left( s-2\right) ^{2}}\right) \left( \dfrac{1}{\left( s+3\right) ^{2}+4}\right) \leftrightarrow t\cdot e^{2t}\ast \dfrac{1}{2}e^{-3t}\sin 2t $
그리고 TI는 컨볼루션 적분을 처리합니다(그림 4 a 참조).

그림 4 b와 4 c는 결과의 단순화를 보여줍니다.
복소수를 사용하여 부분 분수로 전개할 수도 있습니다.
TI에서 선언되지 않은 변수는 실수로 간주되지만, 이 변수에 밑줄 "_" 기호를 추가하면 복소수로 간주됩니다.
실제로 s가 실수인지 복소수인지에 따라 TI가 $ \dfrac{1}{s+i} $ 를 어떻게 단순화하는지 보세요(그림 5).

이 단계에서 대응관계 $ \dfrac{1}{s+a} \leftrightarrow e^{at} [ Re\left( s\right) > -a] $ 와
오일러 공식 $e^{it} =\cos(t) + i \sin(t) , \left( t\in R\right) $ 을 사용하면 복소 부분 분수가 수행된 후 역 라플라스 변환을 계산할 수 있습니다.
여기서 g(s)라고 부를 $ F\left( s\right) =\dfrac{1}{\left( s-2\right) ^{2}\cdot \left( s^{2}+6s+13\right) } $ 의 예를 다시 살펴봅시다.
부분 분수로 전개하기 전에 복소수로 인수분해하는 것이 중요합니다(그림 6 a);

이 작업은 s가 복소수라는 제약 하에 수행됩니다(그림 6 b 및 6 c).
그런 다음 복소 근이 켤레 쌍으로 나타난다는 사실을 이용하여
$ ze^{\left( 3+2i\right) t}+\overline{z}e^{\left( 3-2i\right) t}-\dfrac{10}{841}e^{2t}+\dfrac{1}{29}te^{2t}$ 라고 쓰면 됩니다.
여기서 z는 숫자 $ z = \dfrac{5}{841} + \dfrac{21}{3364}i $ 로 정의되었습니다.
TI는 "conj"를 사용하여 복소수를 켤레복소수로 만듭니다(그림 7).

미분방정식 시스템과 라플라스 변환
TI는 라플라스 변환을 사용하여 미분방정식 시스템을 해결하는 데 매우 유용할 수 있습니다.
계산기가 길고 지루한 계산을 처리하므로 사용자는 해결할 방정식만 지정하면 됩니다.
다음 시스템을 고려해 봅시다:
$ \begin{cases}\dfrac{dx}{dt}-3x-6y=27t^{2},,x\left( 0\right) =5\\ \dfrac{dx}{dt}+\dfrac{dy}{dt}-3y=5e^{t},y\left( 0\right) =-1\end{cases} $
s 도메인으로 변환하면 다음을 얻습니다:
$ \begin{cases}sX-5-3X-6Y=\dfrac{54}{s^{3}}\\ sX-5+sY+1-3Y=\dfrac{5}{s-1}\end{cases} $
여기서 X와 Y는 각각 x와 y의 라플라스 변환을 나타냅니다. 마지막으로, 우리 시스템을 행렬 형태로 다시 쓰면 다음을 해결해야 합니다:
$ \begin{bmatrix} s-3 & -6 \\ s & s-3 \end{bmatrix}\begin{bmatrix} X \\ Y \end{bmatrix}=\begin{bmatrix} \dfrac{54}{s^{3}}+5 \\ \dfrac{5}{s-1}+4 \end{bmatrix} $
TI가 개입하고 우리는 행렬을 정의합니다(그림 8).

계수 행렬을 m이라고 부르고 오른쪽 행렬을 b라고 부르기로 합니다.
좋은 옛날 크라머 방법은 이제 쓸모없어졌습니다!
실제로 TI의 "simult" 함수를 사용하면 정사각형 선형 시스템을 해결할 수 있습니다(그림 9).
지루한 행렬식의 몫을 계산할 필요가 없습니다(또는 를 입력해도 결과는 같았을 것입니다).
이제 부분 분수로 전개하기만 하면 됩니다.
"expand" 명령은 리스트와 행렬에서도 작동합니다. "expand"의 구문은 expand(exp [, var])입니다. (그림 10).

라플라스 변환 표를 사용하여 다음과 같이 쓸 수 있습니다:
$ x\left( t\right) =3e^{t}+2+6t-9t^{2} $
$ y\left( t\right) =-e^{t}-6t $
세상의모든계산기 님의 최근 댓글
3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은 조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요. 100÷7 = 14.285714285714285714285714285714 소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다. 2025 12.30 그럼 해가 무한히 많은지 아닌지 어떻게 아느냐? 고등학교 수학 교과과정에 나오는 행렬의 판별식(d, determinant)을 이용하면 알 수 있습니다. ㄴ 고교과정에서는 2x2 행렬만 다루던가요? 연립방정식의 계수들로 행렬을 만들고 그 행렬식(determinant)을 계산하여야 합니다. 행렬식이 d≠0 이면 유일한 해가 존재하고, d=0 이면 해가 없거나 무수히 많습니다. * 정상적인 경우 (`2y + 8z = 115`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 8 | 행렬식 값 = 1(0 - (-7)) - 1(8 - 0) = 7 - 8 = -1 (0이 아니므로 유일한 해 존재) * 문제가 된 경우 (`2y + 7z = 100`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 7 | 행렬식 값 = 1(0 - (-7)) - 1(7 - 0) = 7 - 7 = 0 (0이므로 유일한 해가 존재하지 않음) 2025 12.30 좀 더 수학적으로 말씀드리면 (AI Gemini 참고) 수학적 핵심 원리: 선형 독립성(Linear Independence) 3원 1차 연립방정식에서 미지수 x, y, z에 대한 단 하나의 해(a unique solution)가 존재하기 위한 필수 조건은 주어진 세 개의 방정식이 서로 선형 독립(linearly independent) 관계에 있어야 한다는 것입니다. * 선형 독립 (Linearly Independent): 어떤 방정식도 다른 방정식들의 조합(상수배를 더하거나 빼는 등)으로 만들어질 수 없는 상태입니다. 기하학적으로 이는 3개의 평면(각 방정식은 3D 공간의 평면을 나타냄)이 단 한 개의 점(해)에서 만나는 것을 의미합니다. * 선형 종속 (Linearly Dependent): 하나 이상의 방정식이 다른 방정식들의 조합으로 표현될 수 있는 상태입니다. 이 경우, 새로운 정보를 제공하지 못하는 '잉여' 방정식이 존재하는 것입니다. 기하학적으로 이는 3개의 평면이 하나의 선에서 만나거나(무수히 많은 해), 완전히 겹치거나, 혹은 평행하여 만나지 않는(해가 없음) 상태를 의미합니다. 질문자님의 사례는 '선형 종속'이 되어 무수히 많은 해가 발생하는 경우입니다. 2025 12.30 질문하신 연립 방정식은 미지수가 3개이고 모두 1차인 3원 1차 연립방정식입니다. 이상적으로 문제가 없다면 {x,y,z} 에 대한 좌표가 하나 나오게 됩니다. 원하는 답 {52.5, -2.5, 15} 그런데 두개 조건(식)을 그대로 두고 나머지 하나를 변형하다 보니 원하는 답이 나오지 않는 상황이 발생하였다고 질문하신 상황입니다. 3개의 조건식이 주어진 3원 1차 연립방정식은 조건을 변형해서 하나의 변수를 제거할 수 있습니다. 그러면 2개의 조건식으로 주어지는 2원 1차 연립방정식으로 변형할 수 있습니다. (알아보기 더 쉬워서 변형하는 겁니다) 변경하지 않은 조건의 식(con1) 을 이용해 하나의 y & z 1차 방정식을 유도할 수 있는데요. 나머지 방정식이 con1에서 유도된 방정식과 동일해지면 하나의 답이 구해지지 않는 것입니다. 계산기(ti-nspire)는 {x,y,z} 의 답이 하나가 아니고 무수히 많음을 c1 을 이용해서 표현해 준 것입니다. linear_independence_cond12.tns 2025 12.30