• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기
      • 자유(질문) 게시판
      • 계산기 뉴스/정보
      • 수학, 과학, 공학 이야기
      • 세모계 : 공지 게시판
        • 구글 맞춤검색
    • TI
    • CASIO
    • HP
    • SHARP
    • 일반(쌀집) 계산기
    • 기타계산기
    • by OrangeDay
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
    • 변곡점(變曲點, inflection point)

    • Profile
      • 세상의모든계산기
      • 2024.07.10 - 10:43 2024.07.09 - 09:36 788 2

    변곡점의 정의

     

    변곡점(變曲點, inflection point)은 곡선의 곡률이 부호를 바꾸는 점을 말합니다.

    좀 더 구체적으로, 곡선 \( y = f(x) \)에 대해 다음 두 조건을 모두 만족하는 점 \( (a, f(a)) \)을 변곡점이라고 합니다:

    1. \( f''(a) = 0 \) 또는 정의되지 않는다.
    2. \( f''(x) \)가 \( x = a \)를 기준으로 좌우에서 부호가 바뀐다. 즉, \( x < a \)일 때 \( f''(x) \)와 \( x > a \)일 때 \( f''(x) \)의 부호가 다르다.

    이를 통해 변곡점에서 곡선의 오목(콘케이브)과 볼록(컨벡스)의 특성이 바뀌게 됩니다.

     

    예를 들어, \( y = x^3 \) 함수는 \( x = 0 \)에서 변곡점을 가집니다. 왜냐하면,
    - \( f''(x) = 6x \)이고,
    - \( f''(0) = 0 \)이며,
    - \( x = 0 \)의 좌우에서 \( f''(x) \)의 부호가 바뀌기 때문입니다. \( x < 0 \)일 때 \( f''(x) < 0 \), \( x > 0 \)일 때 \( f''(x) > 0 \)입니다.

    이러한 변곡점을 찾기 위해 2차 도함수 테스트(Second Derivative Test)를 사용하기도 합니다. 변곡점의 위치를 정확히 알아내기 위해서는 함수의 도함수를 계산하고 그 값을 분석하는 과정이 필요합니다.

     

    특징

    • 연속성: 변곡점에서 함수는 연속이어야 합니다.
    • 미분 가능성: 변곡점에서 함수는 최소한 1차 미분 가능해야 합니다.
    • 곡률 변화: 변곡점을 기준으로 함수의 곡률(curvature)이 바뀝니다. 즉, 그래프의 오목성(concavity)이 변화합니다.
    • 접선의 특성: 변곡점에서의 접선은 함수 그래프를 관통합니다. 이 점을 제외한 다른 점에서는 접선이 함수 그래프와 한 점에서만 만납니다.
    • 2차 도함수와의 관계: 대부분의 경우, 변곡점에서 2차 도함수(f''(x))가 0이 됩니다. 그러나 2차 도함수가 존재하지 않는 경우에도 변곡점이 될 수 있습니다.
    • 3차 도함수의 역할: 만약 2차 도함수가 0이라면, 3차 도함수를 확인하여 실제로 변곡점인지 판단할 수 있습니다. 3차 도함수가 0이 아니라면 그 점은 변곡점입니다.
    Attached file
    image.png 71.3KB 32
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    AGI 자기 거버넌스 구조와 인간-AGI 관계 모델 (written by GEMINI & GPT) 46 1 2026 01.30   AI 시대, '기본소득'을 넘어 '기여소득'으로: 새로운 사회 계약을 향한 제언 - Written by Gemini 96 1 2026 01.28 쌀집계산기로 선형 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 114 2 2026 01.18 공학용 계산기로 기하평균 구하기 -> 오류 가능성(?) 171 2026 01.05 카시오 fx-9910CW 출시 fx-9910CW ClassWiz Advanced Scientific (2nd edition, fx-991CW) 515 10 2025 12.28

    세상의모든계산기 님의 최근 댓글

    V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다.  이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다.   2026 02.04 ​ A) 1*3*5*7*9 = 계산 945 ​ B) √ 12번 누름 ㄴ 12회 해도 되고, 14회 해도 되는데, 횟수 기억해야 함. ㄴ 횟수가 너무 적으면 오차가 커짐 ㄴ 결과가 1에 매우 가까운 숫자라면 된 겁니다. 1.0016740522338 ​ C) - 1 ÷ 5 + 1 = 1.0003348104468 ​ D) × = 을 (n세트) 반복해 입력 ㄴ 여기서 n세트는, B에서 '루트버튼 누른 횟수' 3.9398949655688 빨간 부분 숫자에 오차 있음. (소숫점 둘째 자리 정도까지만 반올림 해서 답안 작성) ​ 참 값 = 3.9362834270354... 2026 02.04 1. 분모 먼저 계산 400 × 10000 = 100 × 6000 = GT 결과값 4,600,000 역수 처리 ÷÷== 결과값 0.00000021739 2. 분자 곱하기 ×3 00 00 00 ×4 00 ×1 00 00 최종 결과 = 2,608,695.65217 2026 02.04 해결 방법 1. t=-1 을 기준으로 그래프를 2개로 나누어 표현 ㄴ 근데 이것도 tstep을 맞추지 않으면 문제가 발생할 것기도 하고, 상관이 없을 것 같기도 하고... 모르겠네요.    2. t=-1 이 직접 계산되도록 tstep을 적절하게 조정 tstep=0.1 tstep=0.01 도 해 보고 싶지만, 구간 크기에 따라 최소 tstep 이 변하는지 여기서는 0.01로 설정해도 0.015로 바뀌어버립니다.  그래서 tstep=0.02 로 하는게 최대한 긴 그래프를 얻을 수 있습니다.  2026 02.02 불연속 그래프 ti-nspire는 수학자처럼 연속적인 선을 그리는 것이 아니라, 정해진 `tstep` 간격으로 점을 찍고 그 점들을 직선으로 연결하는 'connect-the-dots' 방식으로 그래프를 그립니다. 여기에 tstep 간격에 따라 특이점(분모=0)이 제외되어 문제가 나타난 것입니다. seq(−2+0.13*t,t,0,23) {−2.,−1.87,−1.74,−1.61,−1.48,−1.35,−1.22,−1.09,−0.96,−0.83,−0.7,−0.57,−0.44,−0.31,−0.18,−0.05,0.08,0.21,0.34,0.47,0.6,0.73,0.86,0.99} t=-1 에서 그래프를 찾지 않습니다. 그 좌우 값인 −1.09, −0.96 두 값의 그래프값을 찾고, Window 범위를 보고 적당히 (연속되도록) 이어서 그래프를 완성하는 방식입니다. 그래서 t=-1에서도 그래프 값이 존재하는 것입니다. 2026 02.02
    글쓴이의 서명작성글 감추기 

    댓글2

    • Profile 0
      세상의모든계산기
      2024.07.09 - 12:59 2024.07.09 - 10:17 #43874

      "4차 함수의 변곡점이 존재한다면, 그 도함수는 반드시 극대, 극소값을 가진다."라는 명제는 참인가?


      ### 명제

      "4차 함수의 변곡점이 존재한다면, 그 도함수는 반드시 극대, 극소값을 가진다."

       

      ### 증명

       

      1. **전제:**
         - 4차 함수 \( f(x) = Ax^4 + Bx^3 + Cx^2 + Dx +E, (A \neq 0)  \)의 변곡점이 존재한다.

      2. **변곡점의 조건:**
         - 변곡점 \( a \)에서 \( f''(a) = 0 \)이면서, \( a \)의 좌우에서 \( f''(x) \)의 부호가 바뀐다.

      3. **2차 도함수 \( f''(x) \):**
         - \( f''(x) \)는 4차 함수 \( f(x) \)의 두 번째 도함수로서 2차 함수의 형태이다.
         - 따라서 \( f''(x) \)는 다음과 같은 형태를 가진다:
           \[ f''(x) = 12Ax^2 + 6Bx + 2C \]
           여기서 \( A \neq 0 \)이고, \( A \), \( B \), \( C \)는 4차 함수의 계수에 따른 상수이다.

      4. **2차 방정식의 성질:**
         - \( f''(x) = 0 \)을 만족하는 \( α \)가 존재하고, \( α \)의 좌우에서 \( f''(x) \)의 부호가 바뀌므로 \( f''(x) = 0 \)을 만족하는 또 다른 실근 \( β \)가 반드시 존재해야 한다.
         - 이는 2차 방정식 \( f''(x) = 0 \)이 서로 다른 두 실근 \( α \)와 \( β \)를 가진다는 것을 의미한다.

      5. **1차 도함수 \( f'(x) \):**
         - \( f'(x) \)는 4차 함수 \( f(x) \)의 첫 번째 도함수로서 3차 함수의 형태이다.
         - 3차 함수 \( f'(x) \)는 \( f''(x) = 0 \)이 되는 점 \( α \)와 \( β \)에서 극값(극대,극소 or 극소,극대)을 가진다.

      6. **결론:**
         - 3차 함수 \( f'(x) \)는 극대값과 하나의 극소값을 가진다.
         - 따라서, 4차 함수의 변곡점이 존재한다면, 그 도함수인 3차 함수 \( f'(x) \)는 반드시 극대와 극소값을 가진다.

      댓글
    • 1
      Profile 0
      세상의모든계산기
      2024.07.09 - 12:56 2024.07.09 - 10:56 #43877

      반례) f'(x) = a*(x-α)*(x-β)^2 형태인 경우 ?

       

      image.png

      3차함수 f2(x) 는 극대, 극소를 모두 가짐.

      따라서 반례 실패.

      "4차함수가 극대/극소를 모두 가지는지 물은 것이 아님"

      Attached file
      image.png 59.2KB 16
      댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    2
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의모든계산기
    • 사업자등록번호 703-91-02181
    • 세모계 all rights reserved.