- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
원통형 파이프에 종이를 감을때, 전체 원통의 두께는?

ㄴ 이미지 생성 : Gemini 1.5 Flash
직경 d_cm 인 원통형 파이프에, 두께 t_mm 인 종이를, L_meter 감으면
롤(원통)의 중심에서 몇 cm 까지 두꺼워질까요?
방법A) 감긴 단면의 면적으로 풀기
단면을 잘라 보았을 때, 전체 원통의 면적 = 종이의 면적 + 파이프의 면적이 됩니다.
(가정 : ⓐ 완전 밀착 ⓑ 압력에 의한 종이 길이나 두께의 변성 없음)
따라서 $\pi R^2-\pi r_0^2=t_{mm} \cdot L_m$ 가 성립합니다.
이 식을 이용해 solve 로 풀거나,
변수를 다른 변수로 정리해 풀면 답이 나옵니다.

문제1) 파이프 지름(d)이 6 inch, 종이 두께가 0.1mm, 종이 길이가 500m 일 때, 원통 중심에서 종이 끝까지의 길이(전체 반지름)는?
문제2) 파이프 지름(d)이 8.8cm, 종이 두께가 0.5mm, 종이 길이가 150m 일 때는?

댓글4
-
세상의모든계산기
TI-nspire 에서 단위를 수식에 미리 넣으면?

자동으로 approx 로 변형되어 버리네요. 보기가 조금 더 힘든 듯...
그냥 변수만 대입해 넣고, 숫자 대입할 때 한가지 단위(meter)로 통일하는 편이 좋겠습니다.
이 편이 단위 때문에 발생할 수 있는 오해 소지도 적을 것 같구요.
-
세상의모든계산기
최고 종이를 많이 감았을 때 허용 지름(2r)을 파이프 포함하여 42cm이라고 하면, 총 종이의길이는 몇 미터까지 감을 수 있나?
파이프 지름(d)은 17.5cm 이고 종이 두께(t)는 0.1mm입니다.

-
세상의모든계산기
방법B) 감긴 횟수로 계산
1. 첫 바퀴에 감긴 종이의 길이는 \( l_1 = \pi (d+t) \) (여기서 \( d \)는 원통 파이프의 직경)이다.
ㄴ 종이의 안쪽 원을 기준으로 길이를 재거나, 바깥쪽 원을 기준으로 길이를 잴 수도 있는데, 종이의 중심을 기준으로 재는 것이 가장 합리적이겠죠?ㄴ 안쪽 원보다는 길고, 바깥쪽 원보다는 짧아야 하니...
2. 두번째 바퀴에 감긴 종이의 길이는 \( l_2 = 2\pi\times r_1 = l_1 + 2\pi t \) 입니다.3. 세번째 바퀴에 감긴 종이의 길이는 \( l_3 = 2\pi\times r_2 = l_1 + 4\pi t \) 입니다.
따라서, 매 바퀴마다 둘레는 \( 2\pi t \)씩 더해집니다.
n바퀴째에 감긴 종이의 길이는 \( l_n = l_1 + n\cdot 2\pi t \) 가 됩니다.
종이를 \( n \) 바퀴 감았을 때의 총 길이와 반지름:
1. 반지름 증가:
- 첫 번째 감기 전의 반지름: \( r_0 = \frac{d}{2} \)
- 종이를 \( n \) 바퀴 감은 후의 반지름 \( r_n \)은:
\[
r_n = r_0 + n \times t = \frac{d}{2} + n \times t
\]2. 감은 종이의 총 길이:
- 종이를 \( n \) 바퀴 감았을 때의 총 종이 길이 \( L_n \)은:
\[
L_n = l_1 + l_2 + l_3 + \dots + l_n
\]
- 각 바퀴마다 길이는 \( l_n = d\pi + n\cdot 2\pi t \)이므로, 총 길이를 구하려면 이를 합산합니다:
\[
L_n = \sum_{k=1}^{n} \left( d\pi + k \cdot 2\pi t \right)
= nd\pi + \left( \pi t \cdot (n(n+1)) \right)
\]
여기서 \( \dfrac{n(n+1)}{2} \)는 1부터 \( n \)까지의 정수들의 합입니다.
n(감은 횟수)을 먼저 구하고, n을 $ r_n $ 공식에 대입하면 값이 찾아집니다.
본문방법 r=0.147383629719*_m
댓글방법 r=0.14735948683579
본문과 약~~~간의 오차가 있긴 한데... 무시해도 될 것 같습니다.
그런데 왜 차이가 났을까요?
"본문의 방식은 부피가 직사각형 기준이라서 문제가 없지만,
댓글의 방식은 매 바퀴마다 안쪽은 부피가 겹치고, 바깥쪽은 부피가 모자르는 기하학적 구조라서 발생하는 오차가 아닐까?" 추정해 봅니다.
세상의모든계산기 님의 최근 댓글
엑셀 파일로 만드니 전체 160~200MB 정도 나옵니다. 읽고 / 저장하는데 한참 걸리네요. 컴 사양을 좀 탈 것 같습니다. 100만 개 단위로 끊어서 20MB 정도로 분할해 저장하는 편이 오히려 속 편할 것 같습니다. 2026 02.10 엑셀 / 행의 최대 개수, 열의 최대 개수, 셀의 최대 개수 엑셀의 행 개수 제한은 파일 형식에 따라 다르며, 최신 .xlsx 파일 형식은 시트당 최대 1,048,576행까지 지원하지만, 구형 .xls 파일은 65,536행으로 제한됩니다. 따라서 대용량 데이터를 다룰 때는 반드시 최신 파일 형식(.)으로 저장해야 하며, 행과 열의 총 수는 1,048,576행 x 16,384열이 최대입니다. 주요 행 개수 제한 사항: 최신 파일 형식 (.xlsx, .xlsm, .xlsb 등): 시트당 1,048,576행 (2^20). 구형 파일 형식 (.xls): 시트당 65,536행 (2^16). 그 외 알아두면 좋은 점: 최대 행 수: 1,048,576행 (100만여개) 최대 열 수: 16,384열 (XFD) 대용량 데이터 처리: 65,536행을 초과하는 데이터를 다루려면 반드시 .xlsx 형식으로 저장하고 사용해야 합니다. 문제 해결: 데이터가 많아 엑셀이 멈추거나 오류가 발생하면, 불필요한 빈 행을 정리하거나 Inquire 추가 기능을 활용하여 파일을 최적화할 수 있습니다. 2026 02.10 [일반계산기] 매출액 / 원가 / 마진율(=이익율)의 계산. https://allcalc.org/20806 2026 02.08 V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다. 이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다. 2026 02.04 A) 1*3*5*7*9 = 계산 945 B) √ 12번 누름 ㄴ 12회 해도 되고, 14회 해도 되는데, 횟수 기억해야 함. ㄴ 횟수가 너무 적으면 오차가 커짐 ㄴ 결과가 1에 매우 가까운 숫자라면 된 겁니다. 1.0016740522338 C) - 1 ÷ 5 + 1 = 1.0003348104468 D) × = 을 (n세트) 반복해 입력 ㄴ 여기서 n세트는, B에서 '루트버튼 누른 횟수' 3.9398949655688 빨간 부분 숫자에 오차 있음. (소숫점 둘째 자리 정도까지만 반올림 해서 답안 작성) 참 값 = 3.9362834270354... 2026 02.04