- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
원통형 파이프에 종이를 감을때, 전체 원통의 두께는?

ㄴ 이미지 생성 : Gemini 1.5 Flash
직경 d_cm 인 원통형 파이프에, 두께 t_mm 인 종이를, L_meter 감으면
롤(원통)의 중심에서 몇 cm 까지 두꺼워질까요?
방법A) 감긴 단면의 면적으로 풀기
단면을 잘라 보았을 때, 전체 원통의 면적 = 종이의 면적 + 파이프의 면적이 됩니다.
(가정 : ⓐ 완전 밀착 ⓑ 압력에 의한 종이 길이나 두께의 변성 없음)
따라서 $\pi R^2-\pi r_0^2=t_{mm} \cdot L_m$ 가 성립합니다.
이 식을 이용해 solve 로 풀거나,
변수를 다른 변수로 정리해 풀면 답이 나옵니다.

문제1) 파이프 지름(d)이 6 inch, 종이 두께가 0.1mm, 종이 길이가 500m 일 때, 원통 중심에서 종이 끝까지의 길이(전체 반지름)는?
문제2) 파이프 지름(d)이 8.8cm, 종이 두께가 0.5mm, 종이 길이가 150m 일 때는?

댓글4
-
세상의모든계산기
TI-nspire 에서 단위를 수식에 미리 넣으면?

자동으로 approx 로 변형되어 버리네요. 보기가 조금 더 힘든 듯...
그냥 변수만 대입해 넣고, 숫자 대입할 때 한가지 단위(meter)로 통일하는 편이 좋겠습니다.
이 편이 단위 때문에 발생할 수 있는 오해 소지도 적을 것 같구요.
-
세상의모든계산기
최고 종이를 많이 감았을 때 허용 지름(2r)을 파이프 포함하여 42cm이라고 하면, 총 종이의길이는 몇 미터까지 감을 수 있나?
파이프 지름(d)은 17.5cm 이고 종이 두께(t)는 0.1mm입니다.

-
세상의모든계산기
방법B) 감긴 횟수로 계산
1. 첫 바퀴에 감긴 종이의 길이는 \( l_1 = \pi (d+t) \) (여기서 \( d \)는 원통 파이프의 직경)이다.
ㄴ 종이의 안쪽 원을 기준으로 길이를 재거나, 바깥쪽 원을 기준으로 길이를 잴 수도 있는데, 종이의 중심을 기준으로 재는 것이 가장 합리적이겠죠?ㄴ 안쪽 원보다는 길고, 바깥쪽 원보다는 짧아야 하니...
2. 두번째 바퀴에 감긴 종이의 길이는 \( l_2 = 2\pi\times r_1 = l_1 + 2\pi t \) 입니다.3. 세번째 바퀴에 감긴 종이의 길이는 \( l_3 = 2\pi\times r_2 = l_1 + 4\pi t \) 입니다.
따라서, 매 바퀴마다 둘레는 \( 2\pi t \)씩 더해집니다.
n바퀴째에 감긴 종이의 길이는 \( l_n = l_1 + n\cdot 2\pi t \) 가 됩니다.
종이를 \( n \) 바퀴 감았을 때의 총 길이와 반지름:
1. 반지름 증가:
- 첫 번째 감기 전의 반지름: \( r_0 = \frac{d}{2} \)
- 종이를 \( n \) 바퀴 감은 후의 반지름 \( r_n \)은:
\[
r_n = r_0 + n \times t = \frac{d}{2} + n \times t
\]2. 감은 종이의 총 길이:
- 종이를 \( n \) 바퀴 감았을 때의 총 종이 길이 \( L_n \)은:
\[
L_n = l_1 + l_2 + l_3 + \dots + l_n
\]
- 각 바퀴마다 길이는 \( l_n = d\pi + n\cdot 2\pi t \)이므로, 총 길이를 구하려면 이를 합산합니다:
\[
L_n = \sum_{k=1}^{n} \left( d\pi + k \cdot 2\pi t \right)
= nd\pi + \left( \pi t \cdot (n(n+1)) \right)
\]
여기서 \( \dfrac{n(n+1)}{2} \)는 1부터 \( n \)까지의 정수들의 합입니다.
n(감은 횟수)을 먼저 구하고, n을 $ r_n $ 공식에 대입하면 값이 찾아집니다.
본문방법 r=0.147383629719*_m
댓글방법 r=0.14735948683579
본문과 약~~~간의 오차가 있긴 한데... 무시해도 될 것 같습니다.
그런데 왜 차이가 났을까요?
"본문의 방식은 부피가 직사각형 기준이라서 문제가 없지만,
댓글의 방식은 매 바퀴마다 안쪽은 부피가 겹치고, 바깥쪽은 부피가 모자르는 기하학적 구조라서 발생하는 오차가 아닐까?" 추정해 봅니다.
세상의모든계산기 님의 최근 댓글
적용사례 4 - 파장 스펙트럼 https://news.samsungdisplay.com/26683 ㄴ (좌) 연속되는 그라데이션 ➡️ (우) 540 이하 | 구분되는 층(색) | 560 이상 - 겹치는 부분, 즉 540~560 nm 에서 색상이 차단? 변형? 된 것을 확인할 수 있음. 그럼 폰에서 Color Vision Helper 앱으로 보면? ㄴ 540~560 nm 대역이 검은 띠로 표시됨. 완전 차단됨을 의미 2025 11.05 빨간 셀로판지로도 이시하라 테스트 같은 숫자 구분에서는 유사한 효과를 낼 수 있다고 합니다. 색상이 다양하다면 빨강이나, 노랑, 주황 등도 테스트해보면 재밌겠네요. 2025 11.05 안드로이드 앱 - "Color Vision Helper" 다운받아 본문 내용을 카메라로 찍어 보니, 본문 프로그램에서는 애매하게 보이던 부분에서도 구분이 완전 확실하게 되네요. 숫자 구분 능력 & 편의성 면에서 압도적이라고 할 수 있겠습니다. 2025 11.05 적용 사례 3 - 색상표 https://namu.wiki/w/%ED%97%A5%EC%8A%A4%20%EC%BD%94%EB%93%9C 적녹 색약 기준에서 필터 후 색깔을 느낌으로 표현하면 녹색 계열이 좀 차분? 묵직? 해지는 느낌 적색 계열이 전반적으로 조화를 이루지 못하고 튀는? 느낌 노랑이가 사라지는 느낌. * 적색 계열에서 글씨가 살짝 안보이는 것은 계조 문제(프로그램 문제)일 수 있겠다는 생각 2025 11.04 적용 사례 2 - 셔터스톡 https://www.shutterstock.com/ko/search/%EC%83%89%EC%95%BD%EA%B2%80%EC%82%AC?image_type=illustration 2025 11.04