- CASIO 570
[fx-570ES] STAT 통계 - 편차제곱의 합. SSX 또는 SSY
편차제곱의 합은 통계학에서 데이터의 분산과 표준편차를 계산할 때 중요한 개념입니다. 이를 이해하기 위해 먼저 편차를 정의해야 합니다.

1. 편차 (Deviation):
편차는 각 데이터 값이 평균에서 얼마나 떨어져 있는지를 나타내는 값입니다. 수식으로는 다음과 같습니다.
\[
\text{편차} = x_i - \mu
\]
여기서:
- \( x_i \)는 각 데이터 값
- \( \mu \)는 데이터 값들의 평균입니다.
2. 편차제곱 (Squared Deviation):
편차는 양수 또는 음수일 수 있기 때문에, 이 값들을 제곱하여 편차제곱을 구합니다. 이는 음수와 양수를 구분하지 않고 편차의 크기만을 평가할 수 있게 합니다.
\[
\text{편차제곱} = (x_i - \mu)^2
\]
3. 편차제곱의 합 (Sum of Squared Deviations):
편차제곱을 모든 데이터에 대해 구한 후, 이들을 모두 더한 값이 편차제곱의 합입니다. 이는 데이터가 평균으로부터 얼마나 퍼져 있는지를 나타내는 중요한 값입니다.
\[
\text{편차제곱의 합} = \sum_{i=1}^{n} (x_i - \mu)^2
\]
이 값은 분산(Variance) 및 표준편차(Standard Deviation)를 구하는 데 사용됩니다.
- 분산은 편차제곱의 합을 데이터 개수로 나눈 값입니다.
- 표준편차는 분산의 제곱근입니다.
- 약어 표시
- SSX: 독립 변수 XXX에 대한 편차제곱의 합 (Sum of Squares for XXX).
- SST: 총 편차제곱의 합 (Total Sum of Squares).
- SSR: 회귀의 편차제곱의 합 (Sum of Squares for Regression).
- SSE: 잔차의 편차제곱의 합 (Sum of Squares for Error).
4. SSX와 기본 통계 변수들 간의 관계
1. SSX와 평균:
- SSX는 변수 X의 각 데이터 값이 평균 $ \mu \ $ 에서 얼마나 떨어져 있는지를 제곱한 값의 합입니다. 즉, 편차를 제곱하고 모두 더한 것이 SSX입니다.
\[
SSX = \sum_{i=1}^{n} (x_i - \bar{x})^2
\]
여기서 \(x_i\)는 각 데이터 값, \(\bar{x}\)는 데이터의 평균입니다.
2. SSX와 분산:
- 분산(Variance)은 SSX를 데이터 개수 \(n\)로 나눈 값입니다.
\[
\text{분산} (\sigma^2) = \frac{SSX}{n}
\]
분산은 데이터 값들이 평균에서 얼마나 퍼져 있는지를 나타내는 지표로, SSX를 표본 크기 \(n\)으로 나누어 계산합니다.
만약 표본 분산(sample variance)을 구하려면 \(n\) 대신 \(n - 1\)을 사용합니다.
\[
\text{표본 분산} (s^2) = \frac{SSX}{n - 1}
\]
3. SSX와 표준편차:
- 표준편차(Standard Deviation)는 분산의 제곱근입니다. 따라서, SSX를 이용해 분산을 구한 후, 표준편차를 구할 수 있습니다.
\[
\text{표준편차} (\sigma) = \sqrt{\frac{SSX}{n}}
\]
표본 표준편차(sample standard deviation)의 경우도 마찬가지로 표본 분산의 제곱근을 구합니다.
\[
\text{표본 표준편차} (s) = \sqrt{\frac{SSX}{n - 1}}
\]
요약
SSX는 기본 통계 변수들과 다음과 같은 관계를 가집니다:
- SSX는 평균에서 각 데이터 값들의 편차제곱을 모두 더한 값입니다.
- 분산은 SSX를 데이터의 개수로 나눈 값이며, 데이터 값들의 변동성을 나타냅니다.
- 표준편차는 SSX를 기반으로 구한 분산의 제곱근으로, 데이터가 평균에서 얼마나 퍼져 있는지 보여줍니다.
예시
- 데이터: \( [2, 4, 6, 8] \)
- 평균: \( \bar{x} = 5 \)
- SSX:
\[
SSX = (2-5)^2 + (4-5)^2 + (6-5)^2 + (8-5)^2 = 9 + 1 + 1 + 9 = 20
\]
- 분산: \( \sigma^2 = \frac{SSX}{n} = \frac{20}{4} = 5 \)
- 표준편차: \( \sigma = \sqrt{5} \approx 2.236 \)


: 1-VAR












: Var


4. fx-570 ES 기종에서의 SSX, SSY
카시오 fx-570ES Plus 계산기에는 편차제곱의 합 (SSX, Sum of Squared Deviations)을 직접 구해주는 함수나 변수가 내장되어 있지 않습니다.
https://allcalc.org/5615 - [fx-570][fx-350] STAT 통계 모드 진행 과정 (변수 분석, 회귀 분석 등 전반)
일반적으로 통계 계산을 위해 제공되는 주요 기능들은 평균, 분산, 표준편차 등을 계산하는 것이기 때문에,
표준편차의 계산을 위한 중간 과정인 '분산'이나 '편차제곱의 합'은 통계 변수로 따로 저장되지 않았습니다.
(어떤 변수를 저장할지의 결정은 계산기 모델마다 다를 수 있습니다)
따라서 위에서 일일이 따로 계산하거나, 위의 공식(2. 분산) 을 반대로 계산하여 이미 계산되어 저장된 통계변수를 활용하여 값을 구할 수 있습니다.
\[
\text{편차제곱의 합}, SSX = \sigma^2 \cdot n = s^2 \cdot \left(n - 1\right)
\]












댓글1
-
세상의모든계산기
편차제곱의 합 SS 와
Sum 목록에 있는 x^2의 합은 서로 다른 값입니다.


: Sum


세상의모든계산기 님의 최근 댓글
진짜 색약 안경은 비싸서 살 생각은 없고, 알리에서 싸구려 구매해서 테스트 해 봤습니다. 프로그램과 비슷한 효과가 있고, (프로그램과 비교해서) 알리 싸구려 렌즈가 - 숫자 구분이 아주 약간 더 잘 되고 - 붉은 색상이 더 밝습니다. 채도가 높다고 해야하는 것 같네요. 주의할 점은 알리 색약 안경은 일상용으로는 절대 사용 불가입니다. - 내부 빛반사 방지 코팅이 없어서 내 눈알이 렌즈에 비치고, 그래서 실제로 보여야 할 것과 섞여 보입니다. - 필터 코팅도 최악이라서 중심부(=마젠타) 주변부(=노랑)으로 서로 다르게 색이 들어옵니다. 전반적으로 그라데이션 발생. - 외부에서 봤을 때 렌즈색이 튀기 때문에, 티가 많이 납니다. - 색 구분 면에서는 도움이 될 수도 있지만, 녹색(특정 파장)이 차단되어 LED 신호등의 녹색이 잘 안보일 수 있습니다. 2025 12.24 교점이 2개 이상일때 모든 값을 구하는 법 계산기마다 가능/불가능이 갈릴 수도 있습니다. ㄴ fx-570 의 solve 는 무조건 한번에 하나씩 찾습니다. 따라서, 2차 3차 방정식처럼 규격화된 수식은 solve 대신 EQN 모드에서 답을 구하는게 좋습니다. ㄴ TI-nspire 같은 CAS 계산기의 solve 는 수식에 따라서 여러개가 한꺼번에 찾아지기도 합니다. https://allcalc.org/3448 ㄴ fx-9860G 의 solve는 무조건 1개, solveN 는 수식에 따라 여러개가 찾아질 수 있습니다. https://allcalc.org:443/board_casio/6005#comment_15889 가능하다면, 불확실할때는 그래프로 확인하세요. 2025 12.16 T가 410인 해를 찾는 방법 -> 초기값을 입력하세요. [공학용 계산기] 공학용 계산기의 꽃? solve (솔브) 기능 이해하기 (Newton-Raphson 법, 뉴튼법) https://allcalc.org/11532 2025 12.16 참고 - [공학용 계산기] 정적분 계산 속도 벤치마크 비교 https://allcalc.org/9677 2025 12.11 다른 계산기의 경우와 비교 1. TI-nspire CAS ㄴ CAS 계산기는 가능한 경우 부정적분을 먼저하고, 그 값에 구간을 대입해 최종값을 얻습니다. ㄴ 부정적분이 불가능할 때는 수치해석적 방법을 시도합니다. 2. CASIO fx-991 ES Plus ㄴ CASIO 계산기의 경우, 적분할 함수에 따라 시간이 달라지는 것으로 알고 있는데, 정밀도를 확보할 별도의 알고리즘을 채택하고 있는 것이 아닐까 생각되네요. 2025 12.11