- CASIO 570
[fx-570ES] STAT 통계 - 편차제곱의 합. SSX 또는 SSY
편차제곱의 합은 통계학에서 데이터의 분산과 표준편차를 계산할 때 중요한 개념입니다. 이를 이해하기 위해 먼저 편차를 정의해야 합니다.

1. 편차 (Deviation):
편차는 각 데이터 값이 평균에서 얼마나 떨어져 있는지를 나타내는 값입니다. 수식으로는 다음과 같습니다.
\[
\text{편차} = x_i - \mu
\]
여기서:
- \( x_i \)는 각 데이터 값
- \( \mu \)는 데이터 값들의 평균입니다.
2. 편차제곱 (Squared Deviation):
편차는 양수 또는 음수일 수 있기 때문에, 이 값들을 제곱하여 편차제곱을 구합니다. 이는 음수와 양수를 구분하지 않고 편차의 크기만을 평가할 수 있게 합니다.
\[
\text{편차제곱} = (x_i - \mu)^2
\]
3. 편차제곱의 합 (Sum of Squared Deviations):
편차제곱을 모든 데이터에 대해 구한 후, 이들을 모두 더한 값이 편차제곱의 합입니다. 이는 데이터가 평균으로부터 얼마나 퍼져 있는지를 나타내는 중요한 값입니다.
\[
\text{편차제곱의 합} = \sum_{i=1}^{n} (x_i - \mu)^2
\]
이 값은 분산(Variance) 및 표준편차(Standard Deviation)를 구하는 데 사용됩니다.
- 분산은 편차제곱의 합을 데이터 개수로 나눈 값입니다.
- 표준편차는 분산의 제곱근입니다.
- 약어 표시
- SSX: 독립 변수 XXX에 대한 편차제곱의 합 (Sum of Squares for XXX).
- SST: 총 편차제곱의 합 (Total Sum of Squares).
- SSR: 회귀의 편차제곱의 합 (Sum of Squares for Regression).
- SSE: 잔차의 편차제곱의 합 (Sum of Squares for Error).
4. SSX와 기본 통계 변수들 간의 관계
1. SSX와 평균:
- SSX는 변수 X의 각 데이터 값이 평균 $ \mu \ $ 에서 얼마나 떨어져 있는지를 제곱한 값의 합입니다. 즉, 편차를 제곱하고 모두 더한 것이 SSX입니다.
\[
SSX = \sum_{i=1}^{n} (x_i - \bar{x})^2
\]
여기서 \(x_i\)는 각 데이터 값, \(\bar{x}\)는 데이터의 평균입니다.
2. SSX와 분산:
- 분산(Variance)은 SSX를 데이터 개수 \(n\)로 나눈 값입니다.
\[
\text{분산} (\sigma^2) = \frac{SSX}{n}
\]
분산은 데이터 값들이 평균에서 얼마나 퍼져 있는지를 나타내는 지표로, SSX를 표본 크기 \(n\)으로 나누어 계산합니다.
만약 표본 분산(sample variance)을 구하려면 \(n\) 대신 \(n - 1\)을 사용합니다.
\[
\text{표본 분산} (s^2) = \frac{SSX}{n - 1}
\]
3. SSX와 표준편차:
- 표준편차(Standard Deviation)는 분산의 제곱근입니다. 따라서, SSX를 이용해 분산을 구한 후, 표준편차를 구할 수 있습니다.
\[
\text{표준편차} (\sigma) = \sqrt{\frac{SSX}{n}}
\]
표본 표준편차(sample standard deviation)의 경우도 마찬가지로 표본 분산의 제곱근을 구합니다.
\[
\text{표본 표준편차} (s) = \sqrt{\frac{SSX}{n - 1}}
\]
요약
SSX는 기본 통계 변수들과 다음과 같은 관계를 가집니다:
- SSX는 평균에서 각 데이터 값들의 편차제곱을 모두 더한 값입니다.
- 분산은 SSX를 데이터의 개수로 나눈 값이며, 데이터 값들의 변동성을 나타냅니다.
- 표준편차는 SSX를 기반으로 구한 분산의 제곱근으로, 데이터가 평균에서 얼마나 퍼져 있는지 보여줍니다.
예시
- 데이터: \( [2, 4, 6, 8] \)
- 평균: \( \bar{x} = 5 \)
- SSX:
\[
SSX = (2-5)^2 + (4-5)^2 + (6-5)^2 + (8-5)^2 = 9 + 1 + 1 + 9 = 20
\]
- 분산: \( \sigma^2 = \frac{SSX}{n} = \frac{20}{4} = 5 \)
- 표준편차: \( \sigma = \sqrt{5} \approx 2.236 \)


: 1-VAR












: Var


4. fx-570 ES 기종에서의 SSX, SSY
카시오 fx-570ES Plus 계산기에는 편차제곱의 합 (SSX, Sum of Squared Deviations)을 직접 구해주는 함수나 변수가 내장되어 있지 않습니다.
https://allcalc.org/5615 - [fx-570][fx-350] STAT 통계 모드 진행 과정 (변수 분석, 회귀 분석 등 전반)
일반적으로 통계 계산을 위해 제공되는 주요 기능들은 평균, 분산, 표준편차 등을 계산하는 것이기 때문에,
표준편차의 계산을 위한 중간 과정인 '분산'이나 '편차제곱의 합'은 통계 변수로 따로 저장되지 않았습니다.
(어떤 변수를 저장할지의 결정은 계산기 모델마다 다를 수 있습니다)
따라서 위에서 일일이 따로 계산하거나, 위의 공식(2. 분산) 을 반대로 계산하여 이미 계산되어 저장된 통계변수를 활용하여 값을 구할 수 있습니다.
\[
\text{편차제곱의 합}, SSX = \sigma^2 \cdot n = s^2 \cdot \left(n - 1\right)
\]












댓글1
-
세상의모든계산기
편차제곱의 합 SS 와
Sum 목록에 있는 x^2의 합은 서로 다른 값입니다.


: Sum


세상의모든계산기 님의 최근 댓글
V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다. 이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다. 2026 02.04 A) 1*3*5*7*9 = 계산 945 B) √ 12번 누름 ㄴ 12회 해도 되고, 14회 해도 되는데, 횟수 기억해야 함. ㄴ 횟수가 너무 적으면 오차가 커짐 ㄴ 결과가 1에 매우 가까운 숫자라면 된 겁니다. 1.0016740522338 C) - 1 ÷ 5 + 1 = 1.0003348104468 D) × = 을 (n세트) 반복해 입력 ㄴ 여기서 n세트는, B에서 '루트버튼 누른 횟수' 3.9398949655688 빨간 부분 숫자에 오차 있음. (소숫점 둘째 자리 정도까지만 반올림 해서 답안 작성) 참 값 = 3.9362834270354... 2026 02.04 1. 분모 먼저 계산 400 × 10000 = 100 × 6000 = GT 결과값 4,600,000 역수 처리 ÷÷== 결과값 0.00000021739 2. 분자 곱하기 ×3 00 00 00 ×4 00 ×1 00 00 최종 결과 = 2,608,695.65217 2026 02.04 해결 방법 1. t=-1 을 기준으로 그래프를 2개로 나누어 표현 ㄴ 근데 이것도 tstep을 맞추지 않으면 문제가 발생할 것기도 하고, 상관이 없을 것 같기도 하고... 모르겠네요. 2. t=-1 이 직접 계산되도록 tstep을 적절하게 조정 tstep=0.1 tstep=0.01 도 해 보고 싶지만, 구간 크기에 따라 최소 tstep 이 변하는지 여기서는 0.01로 설정해도 0.015로 바뀌어버립니다. 그래서 tstep=0.02 로 하는게 최대한 긴 그래프를 얻을 수 있습니다. 2026 02.02 불연속 그래프 ti-nspire는 수학자처럼 연속적인 선을 그리는 것이 아니라, 정해진 `tstep` 간격으로 점을 찍고 그 점들을 직선으로 연결하는 'connect-the-dots' 방식으로 그래프를 그립니다. 여기에 tstep 간격에 따라 특이점(분모=0)이 제외되어 문제가 나타난 것입니다. seq(−2+0.13*t,t,0,23) {−2.,−1.87,−1.74,−1.61,−1.48,−1.35,−1.22,−1.09,−0.96,−0.83,−0.7,−0.57,−0.44,−0.31,−0.18,−0.05,0.08,0.21,0.34,0.47,0.6,0.73,0.86,0.99} t=-1 에서 그래프를 찾지 않습니다. 그 좌우 값인 −1.09, −0.96 두 값의 그래프값을 찾고, Window 범위를 보고 적당히 (연속되도록) 이어서 그래프를 완성하는 방식입니다. 그래서 t=-1에서도 그래프 값이 존재하는 것입니다. 2026 02.02