- CASIO 570
[fx-570] 1차 연립 방정식 풀기 (feat. 반복법 Iteration, Gauss-Seidel 가우스-자이델 방법)
출처 : http://www.marco.com.my/my/doc/fx-570es.pdf
문제
다음 연립방정식을 Gauss-Seidel 법으로 풀어라.
5x1 - x2 + 3x3 = 6
4x1 + 7x2 + x3 = 2
2x1 + 3x2 + 10x3 = 9
- 첨자 입력이 안되므로 x1, x2, x3를 각각 A, B, C로 놓고 계산합니다.
- 식을 각각 A, B, C 에 대하여 정리합니다. (손으로 혹은 머리로)
- 정리된 식 3개를 계산기에 한꺼번에 입력합니다.
이 때 각각의 식 사이에 : 기호를 넣습니다.
식을 한꺼번에 입력해야 반복명령을 내릴 때 매우 편합니다.

알파벳 A, B, C 는 【ALPHA】 버튼을 누르고 해당 문자를 찾아서 클릭하여 입력합니다.
등호기호 = 도 계산 명령버튼인 【=】 키가 아니라 【ALPHA】 키를 이용해서 넣습니다.
버튼을 누르면 B와 C를 입력하도록 지시받는데,
【0】【=】 을 눌러 B, C 에 각각 (초기값을) 입력합니다.

B? 값과 C? 값을 입력받는 위 화면은 570 EX와 ES (PLUS) 의 기종에 따라 다릅니다.
버튼을 연속으로 누르면 A, B, C 값이 차례로 계산됩니다.



- A,B,C 계산이 완료된 후에
버튼을 다시 반복하여 누르면 B를 입력하는 화면으로 넘어가는데, 이 때는 앞서 계산된 결과 B=-2/5 가 입력됩니다. (2회차 계산이 시작된 것입니다.)
최종 결과가 나올 때까지 이를 반복합니다.




※ 주의사항
모든 연립방정식이 이 방법으로 풀리는 것은 아니며, 발산하는 경우도 있습니다.
발산하는지 수렴하는지 판단하는 방법이 있는데, 행렬의 모든 행에서 '대각성분의 절대값'이 '같은 행의 나머지 요소의 절대값 합'보다 크면 수렴한다고 합니다.
위 연립방정식을 예로 들면
1행 : |5| > |-1| + |3|
2행 : |7| > |4| + |1|
3행 : |10| > |2| + |3|
로서, 모든 행에서 조건을 만족하므로 반복해가 수렴합니다.
만약, 일부 행에서 조건을 성립하지 않으면 행의 순서를 바꾸어 주는 것이 도움이 될 수 있습니다.
http://apmath.kku.ac.kr/~kimchang/lect/na/chap4/index.html
답이 빠르게 구해지지 않는 경우가 많고, 입력한 수식은 수정이 불가능할 수도 있어서, 처음부터 (플러스, 마이너스, 숫자 등) 하나의 실수도 없게 입력을 잘 하였는지 아주 꼼꼼히 확인하시는게 좋습니다.
그리고 다른 방법으로 해를 구할 방법이 있다면, 그 방법을 이용하시는게 좋습니다.



세상의모든계산기 님의 최근 댓글
2번 사진 3개 사진 공통적으로 구석(corner) 에 증상이 있다는 특징이 있네요. 영상 찾아보니 이 가능성이 가장 높은 듯 합니다. https://www.youtube.com/watch?v=zxRBohepzwc ㄴ Liquid Crystal Leakage (액정 누설). ㄴ 손으로 밀어내니 주변으로 밀려나네요. 그래서 점으로 보이기도 하구요. 2025 10.29 500! 의 십진수 근사값 확인 500! = 1.22013682599111006870123878542304692625357434280319284219241358838 × 10^(1134) (참값, 울프람 알파) 2025 10.29 관련 라이브러리 https://allcalc.org/56263 sgn(x) 내장된 부호 함수(signum function)와 달리, 이 함수의 sgn(0)은 0을 반환합니다. 2025 10.29 라이브러리로 사용할 수 있습니다. (제작자 추천) 1. mylib 폴더에 넣기 2. Actions ➡️ library ➡️ refresh libraries 실행 하기 2025 10.29 ChatGPT-5 기호(÷, /, :) 자체는 의미적으로 같은 “나눗셈”을 뜻하지만, 문맥(사람이 쓰는 수학 vs 컴퓨터/프로그래밍)에 따라 해석 우선순위가 달라질 수 있습니다. 🔹 1️⃣ 전통 수학 표기 — ÷, /, : 수학 교과서, 논문, 일반 문서 등에서는 셋 다 의미적으로 “나누기”로 간주됩니다. 즉, 48÷2(9+3), 48/2(9+3), 48:2(9+3) 은 같은 의미로 받아들여야 합니다. 모두 사람의 수학 관행적 해석이 적용되어 48 ÷ 2 × (9+3) = 288 로 처리되죠. 즉, 기호가 바뀌어도 결과는 바뀌지 않습니다. 🔹 2️⃣ 컴퓨터·프로그래밍 문맥에서 / 사용 시 컴퓨터는 “생략된 곱셈(implicit multiplication)”을 따로 구분하지 못합니다. 따라서 다음 두 식은 완전히 다르게 인식됩니다. 표현 파이썬 등에서 해석 결과 48 / 2*(9+3) ((48 / 2) * (9+3)) 288 48 / 2(9+3) ❌ 문법 오류 (생략된 곱셈 인식 불가) — 즉, 컴퓨터 언어에서는 생략된 곱셈이 허용되지 않기 때문에, /는 반드시 명시적 *와 함께 써야 합니다. 🔹 3️⃣ “:” 기호의 경우 현대 수학에서는 “비율”을 나타내는 기호로 쓰입니다. a:b = \frac{a}{b} 따라서 (27 : 3(1+2)3) 같은 표현은 모호하거나 비표준적으로 간주됩니다. 대부분의 경우 계산기로는 입력 자체가 불가능합니다. ✅ 정리 기호 의미 결과 변화 주로 쓰이는 문맥 ÷ 나누기 없음 초중등 수학, 일반 표기 / 나누기 없음 (단, 프로그래밍에서는 생략 곱 불허) 수학/컴퓨터 : 비율 (또는 나누기 의미로 혼용) 보통 계산식에서는 사용 안 함 비, 비율 표기 🔹 결론 48 ÷ 2(9+3), 48/2(9+3), 48:2(9+3) 는 “수학적 의미”로는 동일하게 81로 해석됩니다. 하지만 프로그래밍이나 수식 파서(context) 에서는 /만 유효하고, 생략된 곱은 허용되지 않으며, :는 아예 다른 의미(비율)로 인식됩니다. 2025 10.28