- TI nspire
Nspire CAS 에서 ∫(x/sinh(c*x)) = 가능? 불가능?
참고
|
∫sinh𝑥 d𝑥=cosh𝑥+𝑐𝑜𝑛𝑠𝑡. ∫cosh𝑥 d𝑥=sinh𝑥+𝑐𝑜𝑛𝑠𝑡. ∫tanh𝑥 d𝑥=ln(cosh𝑥)+𝑐𝑜𝑛𝑠𝑡. ∫sech𝑥 d𝑥=2arctan(𝑒𝑥)+𝑐𝑜𝑛𝑠𝑡. =arctan(sinh𝑥)+𝑐𝑜𝑛𝑠𝑡. =arcsin(tanh𝑥)+𝑐𝑜𝑛𝑠𝑡. =2arctan{tanh(𝑥/2)}+𝑐𝑜𝑛𝑠𝑡. =gd𝑥+𝑐𝑜𝑛𝑠𝑡. ∫csch𝑥 d𝑥=ln{tanh(𝑥/2)}+𝑐𝑜𝑛𝑠𝑡. =ln∣coth𝑥−csch𝑥∣+𝑐𝑜𝑛𝑠𝑡. ∫coth𝑥 d𝑥=ln∣sinh𝑥∣+𝑐𝑜𝑛𝑠𝑡. |
울프람 알파 결과

TI-nspire 에서 시도해 보면? -

그냥은 잘 안되네요.
연구가 필요합니다.
참고 사이트 :
https://blog.naver.com/sluggeryck/220756600487
http://kshscomm.dothome.co.kr/K_SOM/15552 //직접 관련은 없음.
댓글3
-
세상의모든계산기
ChatGPT-4o 에 물어보니
함수 \(\frac{x}{\sinh(c x)}\)의 적분을 해봅시다. 적분은 다음과 같습니다:
\[
\int \frac{x}{\sinh(c x)} \, dx
\]먼저, 다음과 같은 치환을 사용합니다:
\[
u = c x \quad \Rightarrow \quad du = c \, dx \quad \Rightarrow \quad dx = \frac{du}{c}
\]\(x\)와 \(dx\)를 적분에 대입하면:
\[
\int \frac{x}{\sinh(c x)} \, dx = \int \frac{\frac{u}{c}}{\sinh(u)} \cdot \frac{du}{c} = \frac{1}{c^2} \int \frac{u}{\sinh(u)} \, du
\]이제 \(\frac{u}{\sinh(u)}\)를 적분해야 합니다. 부분적분을 사용하여 풀어봅시다. 여기서:
\[
v = u \quad \Rightarrow \quad dv = du
\]
\[
dw = \frac{1}{\sinh(u)} \, du \quad \Rightarrow \quad w = \ln\left(\tanh\left(\frac{u}{2}\right)\right)
\]부분적분 공식을 사용합니다:
\[
\int v \, dw = vw - \int w \, dv
\]이 공식을 우리의 적분에 적용하면:
\[
\int \frac{u}{\sinh(u)} \, du = u \ln\left(\tanh\left(\frac{u}{2}\right)\right) - \int \ln\left(\tanh\left(\frac{u}{2}\right)\right) \, du
\]따라서,
\[
\int \frac{x}{\sinh(c x)} \, dx = \frac{1}{c^2} \left[ u \ln\left(\tanh\left(\frac{u}{2}\right)\right) - \int \ln\left(\tanh\left(\frac{u}{2}\right)\right) \, du \right]
\]여기서 \(u = cx\)를 다시 대입하면:
\[
= \frac{1}{c^2} \left[ cx \ln\left(\tanh\left(\frac{cx}{2}\right)\right) - \int \ln\left(\tanh\left(\frac{u}{2}\right)\right) \, du \right]
\]마지막으로 \(u\)에 대한 적분으로 표현하면:
\[
= \frac{1}{c} \left[ x \ln\left(\tanh\left(\frac{cx}{2}\right)\right) \right] - \frac{1}{c^2} \int \ln\left(\tanh\left(\frac{u}{2}\right)\right) \, du
\]이 적분은 초등 함수로 표현될 수 없습니다.
그러나 \(\frac{x}{\sinh(c x)}\)의 적분은 다음과 같이 표현할 수 있습니다:
\[
\int \frac{x}{\sinh(c x)} \, dx = \frac{x \ln\left(\tanh\left(\frac{cx}{2}\right)\right)}{c} + C
\]여기서 \(C\)는 적분 상수입니다.
알겠습니다. \(\tanh(x)\)는 지수함수를 사용하여 다음과 같이 표현할 수 있습니다:
\[
\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}
\]따라서, \(\tanh\left(\frac{cx}{2}\right)\)도 지수함수를 사용하여 다음과 같이 쓸 수 있습니다:
\[
\tanh\left(\frac{cx}{2}\right) = \frac{e^{\frac{cx}{2}} - e^{-\frac{cx}{2}}}{e^{\frac{cx}{2}} + e^{-\frac{cx}{2}}}
\]최종 결과를 이 표현을 사용하여 적으면, \(\frac{x \ln\left(\tanh\left(\frac{cx}{2}\right)\right)}{c}\)는 다음과 같이 쓸 수 있습니다:
\[
\int \frac{x}{\sinh(c x)} \, dx = \frac{x \ln\left( \frac{e^{\frac{cx}{2}} - e^{-\frac{cx}{2}}}{e^{\frac{cx}{2}} + e^{-\frac{cx}{2}}} \right)}{c} + C
\]이제 최종 결과는 다음과 같습니다:
\[
\int \frac{x}{\sinh(c x)} \, dx = \frac{x}{c} \ln\left( \frac{e^{\frac{cx}{2}} - e^{-\frac{cx}{2}}}{e^{\frac{cx}{2}} + e^{-\frac{cx}{2}}} \right) + C
\]마지막만 nspire 에서 간소화시키면?

Wolfram 의 결과와 같은가? 아닌가??


이 부분이 있고vs없고 차이인데...
뭔지 모르겠으나 차이가 있다고 봐야하지 않나? -
1
세상의모든계산기
Wolfram Alpha의 답에서 추가된 항은 다음과 같습니다:
\[
\frac{\text{PolyLog}[2, -e^{-(cx)}]}{c^2} - \frac{\text{PolyLog}[2, e^{-(cx)}]}{c^2}
\]
여기서 \(\text{PolyLog}[n, z]\)는 다중 로그 함수(Polylogarithm)로, \(n\)차 다중 로그 함수는 다음과 같이 정의됩니다:
\[
\text{PolyLog}[n, z] = \sum_{k=1}^{\infty} \frac{z^k}{k^n}
\]
이 함수는 여러 수학적 상황에서 나타나는 특별한 함수로, 일반적으로 무한 급수로 표현됩니다. Wolfram Alpha의 답에서 이 항들이 추가된 이유는 다음과 같습니다:
1. **정확한 표현**: Wolfram Alpha는 적분 결과를 가능한 한 정확하게 표현하려고 합니다. 일부 적분의 경우, 특히 초월함수가 포함된 적분에서는 다중 로그 함수(PolyLog)를 사용하여 결과를 더 정확하게 나타낼 수 있습니다.
2. **더 넓은 함수 클래스 포함**: 다중 로그 함수(PolyLog)는 지수 함수와 로그 함수의 조합으로 구성된 함수보다 더 넓은 클래스의 함수들을 포함합니다. 이는 적분의 결과를 좀 더 일반화된 형태로 표현할 수 있게 합니다.
우리의 이전 적분 결과와 비교하면, 우리는 특정 형태의 적분 결과를 얻었지만, 다중 로그 함수(PolyLog)를 사용한 결과는 그보다 더 일반적인 결과를 제공합니다. Wolfram Alpha의 결과는 다음과 같습니다:
\[
\int \frac{x}{\sinh(c x)} \, dx = \frac{x}{c} \ln\left( \frac{e^{\frac{cx}{2}} - e^{-\frac{cx}{2}}}{e^{\frac{cx}{2}} + e^{-\frac{cx}{2}}} \right) + \frac{\text{PolyLog}[2, -e^{-(cx)}]}{c^2} - \frac{\text{PolyLog}[2, e^{-(cx)}]}{c^2} + C
\]
이 결과는 이전에 우리가 구한 결과와 다중 로그 함수(PolyLog) 항이 추가된 형태입니다. 이는 특정 적분에서 다중 로그 함수(PolyLog)의 특성을 활용하여 더 포괄적이고 일반적인 결과를 제공하는 것입니다.
결론적으로, Wolfram Alpha의 결과는 우리가 구한 결과를 포함하면서도 더 일반적인 형태로 표현된 결과입니다. 이는 수학적으로 더 정밀한 표현을 제공하며, 특정 적분 문제에서 이러한 형태가 더 유용할 수 있습니다. -
세상의모든계산기
부분적분 프로그램 사용시 https://allcalc.org/8198

이것도 실패!
세상의모든계산기 님의 최근 댓글
3×3 이상인 행렬의 행렬식 determinant https://allcalc.org/50536 2025 12.30 답에 이상한 숫자 14.2857142857가 들어간 것은 조건식에 소숫점(.) 이 들어가 있기 때문에 발생한 현상이구요. 100÷7 = 14.285714285714285714285714285714 소숫점 없이 분수로 식이 주어졌을 때와 결과적으로는 동일합니다. 2025 12.30 그럼 해가 무한히 많은지 아닌지 어떻게 아느냐? 고등학교 수학 교과과정에 나오는 행렬의 판별식(d, determinant)을 이용하면 알 수 있습니다. ㄴ 고교과정에서는 2x2 행렬만 다루던가요? 연립방정식의 계수들로 행렬을 만들고 그 행렬식(determinant)을 계산하여야 합니다. 행렬식이 d≠0 이면 유일한 해가 존재하고, d=0 이면 해가 없거나 무수히 많습니다. * 정상적인 경우 (`2y + 8z = 115`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 8 | 행렬식 값 = 1(0 - (-7)) - 1(8 - 0) = 7 - 8 = -1 (0이 아니므로 유일한 해 존재) * 문제가 된 경우 (`2y + 7z = 100`)의 계수 행렬: 1 | 1 1 0 | 2 | 1 0 -3.5 | 3 | 0 2 7 | 행렬식 값 = 1(0 - (-7)) - 1(7 - 0) = 7 - 7 = 0 (0이므로 유일한 해가 존재하지 않음) 2025 12.30 좀 더 수학적으로 말씀드리면 (AI Gemini 참고) 수학적 핵심 원리: 선형 독립성(Linear Independence) 3원 1차 연립방정식에서 미지수 x, y, z에 대한 단 하나의 해(a unique solution)가 존재하기 위한 필수 조건은 주어진 세 개의 방정식이 서로 선형 독립(linearly independent) 관계에 있어야 한다는 것입니다. * 선형 독립 (Linearly Independent): 어떤 방정식도 다른 방정식들의 조합(상수배를 더하거나 빼는 등)으로 만들어질 수 없는 상태입니다. 기하학적으로 이는 3개의 평면(각 방정식은 3D 공간의 평면을 나타냄)이 단 한 개의 점(해)에서 만나는 것을 의미합니다. * 선형 종속 (Linearly Dependent): 하나 이상의 방정식이 다른 방정식들의 조합으로 표현될 수 있는 상태입니다. 이 경우, 새로운 정보를 제공하지 못하는 '잉여' 방정식이 존재하는 것입니다. 기하학적으로 이는 3개의 평면이 하나의 선에서 만나거나(무수히 많은 해), 완전히 겹치거나, 혹은 평행하여 만나지 않는(해가 없음) 상태를 의미합니다. 질문자님의 사례는 '선형 종속'이 되어 무수히 많은 해가 발생하는 경우입니다. 2025 12.30 질문하신 연립 방정식은 미지수가 3개이고 모두 1차인 3원 1차 연립방정식입니다. 이상적으로 문제가 없다면 {x,y,z} 에 대한 좌표가 하나 나오게 됩니다. 원하는 답 {52.5, -2.5, 15} 그런데 두개 조건(식)을 그대로 두고 나머지 하나를 변형하다 보니 원하는 답이 나오지 않는 상황이 발생하였다고 질문하신 상황입니다. 3개의 조건식이 주어진 3원 1차 연립방정식은 조건을 변형해서 하나의 변수를 제거할 수 있습니다. 그러면 2개의 조건식으로 주어지는 2원 1차 연립방정식으로 변형할 수 있습니다. (알아보기 더 쉬워서 변형하는 겁니다) 변경하지 않은 조건의 식(con1) 을 이용해 하나의 y & z 1차 방정식을 유도할 수 있는데요. 나머지 방정식이 con1에서 유도된 방정식과 동일해지면 하나의 답이 구해지지 않는 것입니다. 계산기(ti-nspire)는 {x,y,z} 의 답이 하나가 아니고 무수히 많음을 c1 을 이용해서 표현해 준 것입니다. linear_independence_cond12.tns 2025 12.30