• SEARCH

    통합검색
세모계
    • Dark Mode
    • GNB Always Open
    • GNB Height Maximize
    • Color
    • Brightness
    • SINCE 2015.01.19.
    • 세모계 세모계
    •   SEARCH
    • 세상의 모든 계산기
      • 자유(질문) 게시판
      • 계산기 뉴스/정보
      • 수학, 과학, 공학 이야기
      • 세모계 : 공지 게시판
        • 구글 맞춤검색
    • TI
    • CASIO
    • HP
    • SHARP
    • 일반(쌀집) 계산기
    • 기타계산기
    • by OrangeDay
  • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
    • 크래머의 규칙 = 크라메르 공식 = Cramer's Rule

    • Profile
      • 세상의모든계산기
      • 2024.10.19 - 13:47 2015.10.23 - 22:33 2387 3

    연립 방정식을 크래머의 규칙(Cramer’s Rule)을 사용하여 풀어 보겠습니다. 

     

    \[
    \begin{bmatrix}
    4 & 5 & 0 \\
    2 & 1 & 2 \\
    1 & 5 & 2
    \end{bmatrix}
    \begin{bmatrix}
    x \\
    y \\
    z
    \end{bmatrix}
    =
    \begin{bmatrix}
    2 \\
    3 \\
    1
    \end{bmatrix}
    \]

     

    1. 행렬과 열 벡터 정의


    - 계수 행렬 \( A \):
    \[
    A = \begin{bmatrix}
    4 & 5 & 0 \\
    2 & 1 & 2 \\
    1 & 5 & 2
    \end{bmatrix}
    \]
    - 변수 벡터 \( \mathbf{x} \):
    \[
    \mathbf{x} = \begin{bmatrix}
    x \\
    y \\
    z
    \end{bmatrix}
    \]
    - 상수 벡터 \( \mathbf{b} \):
    \[
    \mathbf{b} = \begin{bmatrix}
    2 \\
    3 \\
    1
    \end{bmatrix}
    \]

     

    2. 행렬식 계산

     

    크래머의 규칙을 사용하려면 먼저 계수 행렬 \( A \)의 행렬식 \( D \)를 계산합니다.

    \[
    D = \begin{vmatrix}
    4 & 5 & 0 \\
    2 & 1 & 2 \\
    1 & 5 & 2
    \end{vmatrix}
    \]

    행렬식 \( D \)는 다음과 같이 계산됩니다:

    \[
    D = 4 \begin{vmatrix}
    1 & 2 \\
    5 & 2
    \end{vmatrix}
    - 5 \begin{vmatrix}
    2 & 2 \\
    1 & 2
    \end{vmatrix}
    \quad \cancel{+ 0 \begin{vmatrix}
    2 & 1 \\
    1 & 5
    \end{vmatrix}}
    \]

    각 소행렬식은 다음과 같습니다:
    - \( \begin{vmatrix}
    1 & 2 \\
    5 & 2
    \end{vmatrix} = (1)(2) - (2)(5) = 2 - 10 = -8 \)

    - \( \begin{vmatrix}
    2 & 2 \\
    1 & 2
    \end{vmatrix} = (2)(2) - (2)(1) = 4 - 2 = 2 \)

    따라서, \( D \)는 다음과 같이 계산됩니다:
    \[
    D = 4(-8) - 5(2) + 0 = -32 - 10 = -42
    \]

     

    3. 각 변수의 행렬식 계산

     

    각 변수 \( x, y, z \)에 대해 \( D_x, D_y, D_z \)를 계산합니다.

    \( D_x \) 계산
    \( D_x \)는 \( A \)의 첫 번째 열을 상수 벡터 \( \mathbf{b} \)로 대체한 행렬의 행렬식입니다:
    \[
    D_x = \begin{vmatrix}
    2 & 5 & 0 \\
    3 & 1 & 2 \\
    1 & 5 & 2
    \end{vmatrix}
    \]

    계산 방법은 다음과 같습니다:
    \[
    D_x = 2 \begin{vmatrix}
    1 & 2 \\
    5 & 2
    \end{vmatrix}
    - 5 \begin{vmatrix}
    3 & 2 \\
    1 & 2
    \end{vmatrix}
    + 0 \begin{vmatrix}
    3 & 1 \\
    1 & 5
    \end{vmatrix}
    \]

    각 소행렬식은 다음과 같습니다:
    - \( \begin{vmatrix}
    1 & 2 \\
    5 & 2
    \end{vmatrix} = -8 \) (이미 계산됨)

    - \( \begin{vmatrix}
    3 & 2 \\
    1 & 2
    \end{vmatrix} = (3)(2) - (2)(1) = 6 - 2 = 4 \)

    따라서 \( D_x \)는 다음과 같이 계산됩니다:
    \[
    D_x = 2(-8) - 5(4) + 0 = -16 - 20 = -36
    \]

    \( D_y \) 계산
    \( D_y \)는 \( A \)의 두 번째 열을 상수 벡터 \( \mathbf{b} \)로 대체한 행렬의 행렬식입니다:
    \[
    D_y = \begin{vmatrix}
    4 & 2 & 0 \\
    2 & 3 & 2 \\
    1 & 1 & 2
    \end{vmatrix}
    \]

    계산 방법은 다음과 같습니다:
    \[
    D_y = 4 \begin{vmatrix}
    3 & 2 \\
    1 & 2
    \end{vmatrix}
    - 2 \begin{vmatrix}
    2 & 2 \\
    1 & 2
    \end{vmatrix}
    + 0 \begin{vmatrix}
    2 & 3 \\
    1 & 1
    \end{vmatrix}
    \]

    각 소행렬식은 다음과 같습니다:
    - \( \begin{vmatrix}
    3 & 2 \\
    1 & 2
    \end{vmatrix} = 4 \) (이미 계산됨)

    - \( \begin{vmatrix}
    2 & 2 \\
    1 & 2
    \end{vmatrix} = 2 \) (이미 계산됨)

    따라서 \( D_y \)는 다음과 같이 계산됩니다:
    \[
    D_y = 4(4) - 2(2) + 0 = 16 - 4 = 12
    \]

    \( D_z \) 계산
    \( D_z \)는 \( A \)의 세 번째 열을 상수 벡터 \( \mathbf{b} \)로 대체한 행렬의 행렬식입니다:
    \[
    D_z = \begin{vmatrix}
    4 & 5 & 2 \\
    2 & 1 & 3 \\
    1 & 5 & 1
    \end{vmatrix}
    \]

    계산 방법은 다음과 같습니다:
    \[
    D_z = 4 \begin{vmatrix}
    1 & 3 \\
    5 & 1
    \end{vmatrix}
    - 5 \begin{vmatrix}
    2 & 3 \\
    1 & 1
    \end{vmatrix}
    + 2 \begin{vmatrix}
    2 & 1 \\
    1 & 5
    \end{vmatrix}
    \]

    각 소행렬식은 다음과 같습니다:
    - \( \begin{vmatrix}
    1 & 3 \\
    5 & 1
    \end{vmatrix} = (1)(1) - (3)(5) = 1 - 15 = -14 \)

    - \( \begin{vmatrix}
    2 & 3 \\
    1 & 1
    \end{vmatrix} = (2)(1) - (3)(1) = 2 - 3 = -1 \)

    - \( \begin{vmatrix}
    2 & 1 \\
    1 & 5
    \end{vmatrix} = (2)(5) - (1)(1) = 10 - 1 = 9 \)

    따라서 \( D_z \)는 다음과 같이 계산됩니다:
    \[
    D_z = 4(-14) - 5(-1) + 2(9) = -56 + 5 + 18 = -33
    \]

     

    4. 변수 계산

     

    크래머의 규칙에 따라 각 변수는 다음과 같이 계산됩니다:

    \[
    x = \frac{D_x}{D} = \frac{-36}{-42} = \frac{36}{42} = \frac{6}{7}
    \]

    \[
    y = \frac{D_y}{D} = \frac{12}{-42} = -\frac{2}{7}
    \]

    \[
    z = \frac{D_z}{D} = \frac{-33}{-42} = \frac{33}{42} = \frac{11}{14}
    \]

     

    5. 최종 결과

     

    따라서 주어진 연립 방정식의 해는:
    \[
    x = \frac{6}{7}, \quad y = -\frac{2}{7}, \quad z = \frac{11}{14}
    \]

     

    참고 - https://ko.wikipedia.org/wiki/%ED%81%AC%EB%9D%BC%EB%A9%94%EB%A5%B4_%EA%B3%B5%EC%8B%9D

    Attached file
    image.png 6.6KB 41
    이 게시물을..
    N
    0
    0
    • 세상의모든계산기 25
      세상의모든계산기

      계산기는 거들 뿐
      혹은
      계산기를 거들 뿐

    세상의모든계산기 님의 최근 글

    샤프 계산기(EL-W506T, EL-5500X 등) 정적분 계산시 오차 주의 - 정적분 정밀도 높이기 42 2 2025 12.11 미래 AI의 세 번째 임계점: '자율 AI 에이전트'와 '효율성'의 만남 377 2025 11.06 AI 발전의 두 번째 임계점: LLM과 창발적 능력의 시대. written by gemini-2.5 374 2025 11.06 AI 발전의 첫 번째 임계점: GPU와 딥러닝 혁명. written by gemini-2.5 370 2025 11.06 적록 색약 보정 렌즈(안경) 를 컴퓨터로 시뮬레이션 해본다면? 864 7 2025 11.04

    세상의모든계산기 님의 최근 댓글

    참고 - [공학용 계산기] 정적분 계산 속도 벤치마크 비교 https://allcalc.org/9677 2025 12.11 다른 계산기의 경우와 비교 1. TI-nspire CAS  ㄴ CAS 계산기는 가능한 경우 부정적분을 먼저하고, 그 값에 구간을 대입해 최종값을 얻습니다.  ㄴ 부정적분이 불가능할 때는 수치해석적 방법을 시도합니다.    2. CASIO fx-991 ES Plus  ㄴ CASIO 계산기의 경우, 적분할 함수에 따라 시간이 달라지는 것으로 알고 있는데, 정밀도를 확보할 별도의 알고리즘을 채택하고 있는 것이 아닐까 생각되네요.  2025 12.11 일반 계산기는 보통 리셋기능이 따로 없기 때문에, 다른 요인에 영향을 받을 가능성은 없어 보이구요. '원래는 잘 되었는데, 지금은 설정 값이 날아간다'면 메모리 값을 유지할만큼 배터리가 꾸준하게 공급되지 않기 때문일 가능성이 높다고 봐야겠습니다. - 태양광이 있을 때는 계산은 가능하지만, 서랍등에 넣으면 배터리가 없어서 리셋   https://blog.naver.com/potatoyamyam/223053309120 (교체 사진 참조) 1. 배터리 준비:        * 다이소 등에서 LR54 (LR1130) 배터리를 구매합니다. (보통 4개 들이 1,000원에 판매됩니다. LR44와 높이가 다르니 혼동하시면 안됩니다.)   2. 준비물:        * 작은 십자드라이버 (계산기 뒷면 나사용. 이것도 없으시면 다이소에서...)   3. 커버 분해:        * 계산기 뒷면의 나사를 풀고, 머리 부분(윗부분)의 커버를 조심스럽게 분해합니다. (참고해주신 블로그 사진을 보시면 이해가 빠르실 겁니다.)   4. 배터리 교체:        * 기존 배터리를 빼냅니다.        * 새 LR54 배터리의 '+'극 방향을 정확히 확인하여 제자리에 넣어줍니다. (대부분의 경우 '+'극이 위로 보이도록 넣습니다.)   5. 조립:        * 커버를 다시 닫고 나사를 조여줍니다.        * 블로그 사진을 보니 배터리 연결선 등이 눌려서 씹혀 있네요. 원래 씹히도록 설계를 안하는데, 원래 그렇게 만들어 놓은 건지? 모르겠네요. 여튼 씹히면 단선될 가능성이 있으니, 잘 보시고 플라스틱 틈새 등으로 적절히 배치해서 안씹히게 하는 것이 좋습니다. 6. TAX 재설정:        * 계산기의 전원을 켜고 TAX 요율을 10%로 다시 설정합니다. 2025 12.10 TI-nspire 입력 방법 solve({x+a+b=5,x)|a=1 and b=2 2025 12.01 질문하실 때는 항상 계산기 모델명을 정확하게 적으셔야 합니다. 2025 12.01
    글쓴이의 서명작성글 감추기 

    댓글3

    • Profile 0
      세상의모든계산기
      2024.10.19 - 14:41 2015.10.23 - 22:59 #8986

      ※ 행렬의 입력 & 계산 - 확장 라이브러리 Matrix Library https://allcalc.org/1843 사용하면...


      10-23-2015 Image003.jpg

      ㄴ 문제의 행렬식 입력 

      ㄴ 라이브러리 단축키 지정 (안해도 되는데 안하면 더 복잡하니까...)

       

      10-23-2015 Image004.jpg

      ㄴ 역행렬을 통한 풀이 (참조 확인용)

       

      10-23-2015 Image005.jpg

      ㄴ i번째 열을 각각 m_c로 치환

       

      10-23-2015 Image006.jpg

      ㄴ 각각의 치환된 행렬의 Det(=행렬식)

       

      10-23-2015 Image007.jpg

      ㄴ 여인수 전개를 해 볼 경우

       

      10-23-2015 Image008.jpg

      ㄴ 최종 결과의 계산

      Attached file
      10-23-2015 Image003.jpg 24.9KB 142 10-23-2015 Image004.jpg 10.7KB 128 10-23-2015 Image005.jpg 20.7KB 135 10-23-2015 Image006.jpg 14.1KB 130 10-23-2015 Image007.jpg 18.8KB 131 10-23-2015 Image008.jpg 15.2KB 124
      댓글
    • Profile 0
      세상의모든계산기
      2024.10.19 - 14:44 2015.10.29 - 09:26 #9400

      행렬 원소가 복소수인 경우에는?


      이 공식은 계수가 복소수인 경우에도 성립하기 때문에,
      복소수 행렬 및 복소수 연립방정식이 불가능한 계산기에서도 이 공식을 이용하여

      프로그램을 짤 수만 있다면 복소수 해를 구할 수 있습니다. (fx-5800P, EL-9900 등)

       

      리스트 기능 및 공식 저장 기능이 없는 fx-570 급의 계산기로는

      이 방법을 이용해 직접 계산하는 것이 상당히 어렵다고 보시는게 좋겠습니다. 

      댓글
    • Profile 0
      세상의모든계산기
      2024.09.30 - 12:33 2024.09.30 - 12:32 #48581

      크래머의 규칙(Cramer’s Rule)은 연립 선형 방정식의 해를 구하는 방법 중 하나로, 몇 가지 중요한 의미와 특성을 가집니다:


      1. 선형 대수의 기초 개념: 크래머의 규칙은 행렬, 행렬식(determinant), 선형 변환 등 선형 대수의 기본 개념을 활용합니다. 이는 학생들에게 선형 대수의 기초를 이해하는 데 도움을 줍니다.

      2. 해의 존재 조건: 크래머의 규칙은 계수 행렬의 행렬식이 0이 아닐 때 유효합니다. 이는 해가 존재하고 유일하다는 것을 의미합니다. 만약 행렬식이 0이면 해가 존재하지 않거나 무한히 많다는 것을 나타냅니다.

      3. 해의 표현: 크래머의 규칙을 통해 각 변수의 해를 행렬식의 비율로 표현할 수 있습니다. 이는 수학적으로 매우 간결한 형태로 해를 도출할 수 있게 해줍니다.

      4. 공간적 해석: 크래머의 규칙은 기하학적으로도 해석될 수 있습니다. 3차원에서 세 개의 평면이 만나는 점을 찾아내는 과정으로 생각할 수 있으며, 이 점이 연립 방정식의 해가 됩니다.

      5. 컴퓨터 과학 및 공학적 응용: 크래머의 규칙은 컴퓨터 과학과 공학에서 시스템의 해를 찾는 데 사용됩니다. 특히, 작은 시스템에서는 직접 계산으로도 효율적입니다.

      6. 교육적 도구: 크래머의 규칙은 학생들이 선형 방정식의 해를 구하는 방법을 배우는 데 유용한 도구로, 다양한 문제를 해결하는 데 사용될 수 있습니다.

      7. 해의 정수성: 계수 행렬과 상수 벡터가 정수로 이루어져 있다면, 크래머의 규칙을 통해 얻은 해도 정수가 될 수 있는 가능성이 있습니다.

      이와 같은 점에서 크래머의 규칙은 수학적 사고를 발전시키고, 연립 방정식의 해를 효과적으로 찾는 방법으로 널리 사용됩니다.

      댓글
    • 댓글 입력
    • 에디터 전환
    댓글 쓰기 에디터 사용하기 닫기
    • view_headline 목록
    • 14px
    • 목록
      view_headline
    3
    × CLOSE
    전체 수학 64 확률통계 18 공학 13 물리학 2 화학 3 생물학 재무금융 10 기타 2
    기본 (0) 제목 날짜 수정 조회 댓글 추천 비추
    분류 정렬 검색
    등록된 글이 없습니다.
    • 세상의 모든 계산기 수학, 과학, 공학 이야기
    • 세상의모든계산기
    • 사업자등록번호 703-91-02181
    • 세모계 all rights reserved.