- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
원통형 파이프에 종이를 감을때, 전체 원통의 두께는?

ㄴ 이미지 생성 : Gemini 1.5 Flash
직경 d_cm 인 원통형 파이프에, 두께 t_mm 인 종이를, L_meter 감으면
롤(원통)의 중심에서 몇 cm 까지 두꺼워질까요?
방법A) 감긴 단면의 면적으로 풀기
단면을 잘라 보았을 때, 전체 원통의 면적 = 종이의 면적 + 파이프의 면적이 됩니다.
(가정 : ⓐ 완전 밀착 ⓑ 압력에 의한 종이 길이나 두께의 변성 없음)
따라서 $\pi R^2-\pi r_0^2=t_{mm} \cdot L_m$ 가 성립합니다.
이 식을 이용해 solve 로 풀거나,
변수를 다른 변수로 정리해 풀면 답이 나옵니다.

문제1) 파이프 지름(d)이 6 inch, 종이 두께가 0.1mm, 종이 길이가 500m 일 때, 원통 중심에서 종이 끝까지의 길이(전체 반지름)는?
문제2) 파이프 지름(d)이 8.8cm, 종이 두께가 0.5mm, 종이 길이가 150m 일 때는?

댓글4
-
세상의모든계산기
TI-nspire 에서 단위를 수식에 미리 넣으면?

자동으로 approx 로 변형되어 버리네요. 보기가 조금 더 힘든 듯...
그냥 변수만 대입해 넣고, 숫자 대입할 때 한가지 단위(meter)로 통일하는 편이 좋겠습니다.
이 편이 단위 때문에 발생할 수 있는 오해 소지도 적을 것 같구요.
-
세상의모든계산기
최고 종이를 많이 감았을 때 허용 지름(2r)을 파이프 포함하여 42cm이라고 하면, 총 종이의길이는 몇 미터까지 감을 수 있나?
파이프 지름(d)은 17.5cm 이고 종이 두께(t)는 0.1mm입니다.

-
세상의모든계산기
방법B) 감긴 횟수로 계산
1. 첫 바퀴에 감긴 종이의 길이는 \( l_1 = \pi (d+t) \) (여기서 \( d \)는 원통 파이프의 직경)이다.
ㄴ 종이의 안쪽 원을 기준으로 길이를 재거나, 바깥쪽 원을 기준으로 길이를 잴 수도 있는데, 종이의 중심을 기준으로 재는 것이 가장 합리적이겠죠?ㄴ 안쪽 원보다는 길고, 바깥쪽 원보다는 짧아야 하니...
2. 두번째 바퀴에 감긴 종이의 길이는 \( l_2 = 2\pi\times r_1 = l_1 + 2\pi t \) 입니다.3. 세번째 바퀴에 감긴 종이의 길이는 \( l_3 = 2\pi\times r_2 = l_1 + 4\pi t \) 입니다.
따라서, 매 바퀴마다 둘레는 \( 2\pi t \)씩 더해집니다.
n바퀴째에 감긴 종이의 길이는 \( l_n = l_1 + n\cdot 2\pi t \) 가 됩니다.
종이를 \( n \) 바퀴 감았을 때의 총 길이와 반지름:
1. 반지름 증가:
- 첫 번째 감기 전의 반지름: \( r_0 = \frac{d}{2} \)
- 종이를 \( n \) 바퀴 감은 후의 반지름 \( r_n \)은:
\[
r_n = r_0 + n \times t = \frac{d}{2} + n \times t
\]2. 감은 종이의 총 길이:
- 종이를 \( n \) 바퀴 감았을 때의 총 종이 길이 \( L_n \)은:
\[
L_n = l_1 + l_2 + l_3 + \dots + l_n
\]
- 각 바퀴마다 길이는 \( l_n = d\pi + n\cdot 2\pi t \)이므로, 총 길이를 구하려면 이를 합산합니다:
\[
L_n = \sum_{k=1}^{n} \left( d\pi + k \cdot 2\pi t \right)
= nd\pi + \left( \pi t \cdot (n(n+1)) \right)
\]
여기서 \( \dfrac{n(n+1)}{2} \)는 1부터 \( n \)까지의 정수들의 합입니다.
n(감은 횟수)을 먼저 구하고, n을 $ r_n $ 공식에 대입하면 값이 찾아집니다.
본문방법 r=0.147383629719*_m
댓글방법 r=0.14735948683579
본문과 약~~~간의 오차가 있긴 한데... 무시해도 될 것 같습니다.
그런데 왜 차이가 났을까요?
"본문의 방식은 부피가 직사각형 기준이라서 문제가 없지만,
댓글의 방식은 매 바퀴마다 안쪽은 부피가 겹치고, 바깥쪽은 부피가 모자르는 기하학적 구조라서 발생하는 오차가 아닐까?" 추정해 봅니다.
세상의모든계산기 님의 최근 댓글
fx-570 CW 는 아래 링크에서 https://allcalc.org/56026 2025 10.24 불러오기 할 때 변수값을 먼저 확인하고 싶을 때는 VARIABLE 버튼 【⇄[x]】목록에서 확인하고 Recall 하시면 되고, 변수값을 이미 알고 있을 때는 바로 【⬆️SHIFT】【4】로 (A)를 바로 입력할 수 있습니다. 2025 10.24 fx-570 CW 로 계산하면? - 최종 확인된 결과 값 = 73.049507058478629343538 (23-digits) - 오차 = 6.632809104889414877 × 10^-19 꽤 정밀하게 나온건 맞는데, 시뮬레이션상의 22-digits 와 오차 수준이 비슷함. 왜 그런지는 모르겠음. - 계산기중 정밀도가 높은 편인 HP Prime CAS모드와 비교해도 월등한 정밀도 값을 가짐. 2025 10.24 HP Prime 에서 <Home> 73.0495070344 (12-decimal-digits) // python 시뮬레이션과 일치 <CAS> 21자리까지 나와서 이상하다 싶었는데, Ans- 에서 자릿수를 더 늘려서 빼보니, 뒷부분 숫자가 아예 바뀌어버림. 버그인가? (전) 73.0495070584718691243 (21-digits ????) (후) 73.0495070584718500814401 (24-digits ????) 찾아보니 버그는 아니고, CAS에서는 십진수가 아니라 2진수(bit) 단위로 처리한다고 함. Giac uses 48 bits mantissa from the 53 bits from IEEE double. The reason is that Giac stores CAS data (gen type) in 64 bits and 5 bits are used for the data type (24 types are available). We therefore loose 5 bits (the 5 low bits are reset to 0 when a double is retrieved from a gen). 출처 : https://www.hpmuseum.org/cgi-bin/archv021.cgi?read=255657 일단 오차를 놓고 보면 16-decimal-digits 수준으로 보임. 2025 10.23 khiCAS 에서 HP 39gII 에 올린 khiCAS는 254! 까지 계산 가능, 255! 부터는 ∞ fx-9750GIII 에 올린 khiCAS는 factorial(533) => 425760136423128437▷ // 정답, 10진수 1224자리 factorial(534) => Object too large 2025 10.23