- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
Tetration, Power Tower Function 을 이용한 프렉탈 패턴 찾기 #mytetration
관련 프로젝트 링크
https://github.com/DMTPARK/mytetration
https://github.com/creeras/mytetration/tree/main/cuda
https://tetration.org/original/Tetration/index.html
1. 테트레이션 Tetration
거듭제곱을 거듭하여 만들어지는 연산
--> 0차? 연산, 다음수, a' = a+1
--> 1차 연산, 덧셈, a+n = a+1+1+1+1+......+1
--> 2차 연산, 곱셈=덧셈을 거듭, a*n = a+a+a+a+......+a
--> 3차 연산, 거듭제곱=곱셈을 거듭, = a*a*a*a*......*a
--> 4차 연산, 거듭제곱을 거듭, = a^a^a^a^...^a
(왼쪽에서 오른쪽 연산? 오른쪽에서 왼쪽 연산? right-to-left 라고 위키에 적혀 있네요.)
2. (Infinite) Power Tower Function, PTF
f(x) = x^x^x^x^x^x^...... 무한대의 함수입니다.
그걸 프로그램으로 적당히 계산시켜 볼 수 있습니다. (무한대면 계산에 끝이 없겠죠?)
특히 x가 복소수일때를 컴퓨터로 발산하는지 수렴하는지를 좌표평면상에 표시해 보면
아주 재밌는 모양(Fractal) 이 그려집니다.

대충 이런 식인데, 일부분을 확대해 보면 신기한 패턴이 또 나오고
그 일부분을 또 확대해 보면

또 신기한 패턴이 또 나오고...

반복

반복

반복

반복하면

재밌는 패턴을 발견할 수도 있습니다.

왼쪽은 나비같기도 하고, 하나은행 로고 같기도 하고.
오른쪽은 빼박 하트죠?
좌표
x(Re) = -4.086058278688595
y(Im) = -9.740283918520907e-10
eps = 3.6188788410385087e-08



세상의모든계산기 님의 최근 댓글
엑셀 파일로 만드니 전체 160~200MB 정도 나옵니다. 읽고 / 저장하는데 한참 걸리네요. 컴 사양을 좀 탈 것 같습니다. 100만 개 단위로 끊어서 20MB 정도로 분할해 저장하는 편이 오히려 속 편할 것 같습니다. 2026 02.10 엑셀 / 행의 최대 개수, 열의 최대 개수, 셀의 최대 개수 엑셀의 행 개수 제한은 파일 형식에 따라 다르며, 최신 .xlsx 파일 형식은 시트당 최대 1,048,576행까지 지원하지만, 구형 .xls 파일은 65,536행으로 제한됩니다. 따라서 대용량 데이터를 다룰 때는 반드시 최신 파일 형식(.)으로 저장해야 하며, 행과 열의 총 수는 1,048,576행 x 16,384열이 최대입니다. 주요 행 개수 제한 사항: 최신 파일 형식 (.xlsx, .xlsm, .xlsb 등): 시트당 1,048,576행 (2^20). 구형 파일 형식 (.xls): 시트당 65,536행 (2^16). 그 외 알아두면 좋은 점: 최대 행 수: 1,048,576행 (100만여개) 최대 열 수: 16,384열 (XFD) 대용량 데이터 처리: 65,536행을 초과하는 데이터를 다루려면 반드시 .xlsx 형식으로 저장하고 사용해야 합니다. 문제 해결: 데이터가 많아 엑셀이 멈추거나 오류가 발생하면, 불필요한 빈 행을 정리하거나 Inquire 추가 기능을 활용하여 파일을 최적화할 수 있습니다. 2026 02.10 [일반계산기] 매출액 / 원가 / 마진율(=이익율)의 계산. https://allcalc.org/20806 2026 02.08 V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다. 이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다. 2026 02.04 A) 1*3*5*7*9 = 계산 945 B) √ 12번 누름 ㄴ 12회 해도 되고, 14회 해도 되는데, 횟수 기억해야 함. ㄴ 횟수가 너무 적으면 오차가 커짐 ㄴ 결과가 1에 매우 가까운 숫자라면 된 겁니다. 1.0016740522338 C) - 1 ÷ 5 + 1 = 1.0003348104468 D) × = 을 (n세트) 반복해 입력 ㄴ 여기서 n세트는, B에서 '루트버튼 누른 횟수' 3.9398949655688 빨간 부분 숫자에 오차 있음. (소숫점 둘째 자리 정도까지만 반올림 해서 답안 작성) 참 값 = 3.9362834270354... 2026 02.04