- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
인공지능(AI) 수학능력 TEST
앞의 글에서 조니님께서 질문하신 것을 인공지능에게 물어봤습니다.
과연 답변을 잘 할까요?
일단 울프람알파는 명확하게 답변을 안하네요.

댓글9
-
세상의모든계산기2024.05.21 - 10:41 #40794
ChatGPT-4o 에게 물어 봤습니다.
To determine if the equation
is true or false, we can simplify and compare both sides.
### Left Side:
### Right Side:
### Using the Identity for $\arctan$:
We use the identity for the sum of arctangents:
This identity holds when .
In this case, let and :Since , the sum formula becomes:
Thus,
Now, substitute this back into the original equation:
### Left Side Simplification:
### Comparing Left and Right Sides:
The simplified left side is:
This matches the right side exactly. Therefore, the original equation is:
Thus, the statement is **true**.
-
조니
저도 chatgpt-4인데 false가 나오네요. 이 것도 부호 계산을 틀리게 하네요. ㅠㅠ
-
조니
chatgpt 3.5는 true가 나오는게 approximate를 사용해서 같다고 결론을 도출하는데, 이건 아닌거 같습니다. ㅎㅎ
그리고 한글 버전에서는 계산이 안되는데 영문 버전에서는 그나마 엉터리 같지만 결과가 근사하게 나오기는 하네요.
-
-
세상의모든계산기2024.05.21 - 10:44 #40799
제미나이에게도 같은 질문으로 물어 봤습니다.
The statement "-Pi + ArcTan[11/(5 Sqrt[3])] == -Pi/2 - ArcTan[(5 Sqrt[3])/11]" is false.
To prove this, we can simplify both sides of the equation:
Left side:
-Pi + ArcTan[11/(5 Sqrt[3])]
= -Pi + ArcTan[11/(5 * 3^(1/2))]
= -Pi + ArcTan[11/(5 * (3^1/2))]
= -Pi + ArcTan[(11 * 3^(-1/2)) / 5]
= -Pi + ArcTan[(11 * (1/3^(1/2))) / 5]
= -Pi + ArcTan[(11/3^(1/2)) / 5]
Right side:
-Pi/2 - ArcTan[(5 Sqrt[3])/11]
= -Pi/2 - ArcTan[(5 * 3^(1/2)) / 11]
= -Pi/2 - ArcTan[(5 * (3^1/2)) / 11]
= -Pi/2 - ArcTan[(5/11) * (3^1/2)]
= -Pi/2 - ArcTan[(5/11) * (1/3^(1/2))]
= -Pi/2 - ArcTan[(5/(11 * 3^(1/2)))]
= -Pi/2 - ArcTan[(5/(11 * (1/3^(1/2)))]
= -Pi/2 - ArcTan[(5/(11/3^(1/2)))]
= -Pi/2 - ArcTan[(5 * 3^(1/2)) / 11]
Comparing the simplified forms of both sides, we see that they are not equal. Therefore, the original statement is false.
Additional verification:
We can also use a graphing calculator to verify that the two expressions do not have the same value. Plotting both expressions on a graph, we can see that they have different y-intercepts and slopes. This confirms that the two expressions are not equal.
Conclusion:
Based on the above analysis, we can conclude that the statement "-Pi + ArcTan[11/(5 Sqrt[3])] == -Pi/2 - ArcTan[(5 Sqrt[3])/11]" is false.
-
조니
제미나이 저도 해 봤는데 true라고 나오네요
그런데 이건 좀 희한한게 tan(pi/6)을 -루트3/3으로 부호를 틀리게 계산을 했는데도 결과가 맞다고 도출하는게 올바른 결과인지 의문입니다.
-
세상의모든계산기
Copilot 에게도 물어 봤습니다.
True! The given equation holds. Both sides are equal. Here’s the breakdown:1. Start with the left-hand side (LHS):
2. Simplify the fraction:
3. Use the identity:
Applying this to our expression:
4. Simplify the second term:
5. Combine the arctan terms:
6. Use the identity again:
Applying this to our expression:
7. Simplify the numerator:
And the denominator:
8. Final result:
Since
, we have:
Therefore, the LHS equals
.
9. Now let’s look at the right-hand side (RHS):
10. We already found that
So the RHS also equals
.
Since both sides are equal, the given equation is true! �
세상의모든계산기 님의 최근 댓글
Ctrl+Z 를 이용해 뒤로 돌아기기 Undo 기능이 있는지 살펴보세요. 2026 01.23 쌀집계산기로 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 https://allcalc.org/56739 3. 'x' 값 구하기 계산기 조작법 목표: x = Dx / D = [(c×e) - (b×f)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 1 * 1 M+ : 메모리(M)에 1를 더합니다. (현재 M = 1) -0.1 * -0.2 M- : 메모리(M)에서 0.02를 뺍니다. (현재 M = 0.98 = 0.98) 이로써 메모리(MR)에는 분모 0.98가 저장됩니다. 2단계: 분자 Dx 계산 후 나누기 78000 * 1 : 78000를 계산합니다. = : GT에 더합니다. -0.1 * 200000 : -20000를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. // sign changer 버튼 사용 GT : GT를 불러옵니다. GT는 98000 (분자 Dx) 값입니다. ÷ MR = : 위 결과(98000)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 x값 100,000를 구합니다. 4. 'y' 값 구하기 계산기 조작법 목표: y = Dy / D = [(a×f) - (c×d)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 'x'에서와 분모는 동일하고 메모리(MR)에 0.98가 저장되어 있으므로 패스합니다. 2단계: 분자 Dy 계산 후 나누기 GT ± = : GT를 불러오고 부호를 뒤집어 GT에 더합니다. GT가 0으로 리셋됩니다. 【AC】를 누르면 M은 유지되고 GT만 리셋되는 계산기도 있으니 확인해 보세요. 1 * 200000 : 200000를 계산합니다. = : GT에 더합니다. 78000 * -0.2 : -15600를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. GT : GT를 불러옵니다. 215600 (분자 Dy) 값입니다. ÷ MR = : 위 결과(215600)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 y값 220,000를 구합니다. x, y 값을 이용해 최종 결과를 구합니다. 2026 01.18 크레이머 = 크레머 = 크라메르 공식 = Cramer's Rule https://allcalc.org/8985 2026 01.18 부호 변경, Sign Changer 버튼 https://allcalc.org/52092 2026 01.18 [fx-570 CW] 와의 차이 CW에 【×10x】버튼이 사라진 것은 아닌데, 버튼을 누를 때 [ES][EX] 처럼 특수기호 뭉치가 생성되는 것이 아니고, 【×】【1】【0】【xㅁ】 버튼이 차례로 눌린 효과가 발생됨. ※ 계산 우선순위 차이가 발생할 수 있으므로 주의. 괄호로 해결할 것! 2026 01.18