- TI nspire
[TI-nspire] 함수의 점근선 구하기 : Analyze Graph - Asymptotes
1. 점근선이란?
[네이버 지식백과] 점근선 [asymptote, 漸近線] (두산백과)
무한분지(無限分枝)를 가지는 곡선에 있어서 동점(動點)이 그 분지에 따라 원점에서 멀어질 때, 그 점에서 한 정직선(定直線)에의 거리가 0에 가까워질 때의 정직선을 말한다.
- 수평 점근선 : x 가 +∞ 또는 -∞로 갈때 한없이 가까워지는 수평선이 수평 점근선
- 수직 점근선 : 함수(y)가 어떤 영향도 받지 않으면서 값이 계속 커질 때 y축에 평행한 수직선에 가까워지면 그 수직선이 수직 점근선
- 사선 점근선 : 점근선이 x축, y축에 평행하지 않은 경우
2. TI-nspire 의 그래프 점근선 분석 기능 in Graph

Graph Page 에서 Analyze Graph - Analyze Conics - Asymptotes 기능을 이용하면 Conics 함수만 골라서 점근선을 바로 찾을 수 있습니다.
참 편리한 기능이긴 한데, 일반적 입력 형태인 y=f(x) 꼴로 입력한 경우에는 분석이 되지 않습니다. 오직 Conic 형태로 입력된 경우에만 가능한 기능입니다.
따라서 일반적인 함수를 이 방법으로 분석하려면 음함수꼴로 변형시켜서 입력해야 하는 불편함이 있습니다.
3. 또 다른 방법
- 수직 점근선 (= 기울기가 ∞) 의 x 좌표
solve(1/f(x)=0, x)
- 수평 점근선 or 사선 점근선의 기울기
lim(d(f(x))/dx, x→+∞) 또는 lim(d(f(x))/dx, x→+∞)
기울기만 알 수 있으므로, y절편 등을 알려면 추가계산이 필요.
세상의모든계산기 님의 최근 댓글
V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다. 이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다. 2026 02.04 A) 1*3*5*7*9 = 계산 945 B) √ 12번 누름 ㄴ 12회 해도 되고, 14회 해도 되는데, 횟수 기억해야 함. ㄴ 횟수가 너무 적으면 오차가 커짐 ㄴ 결과가 1에 매우 가까운 숫자라면 된 겁니다. 1.0016740522338 C) - 1 ÷ 5 + 1 = 1.0003348104468 D) × = 을 (n세트) 반복해 입력 ㄴ 여기서 n세트는, B에서 '루트버튼 누른 횟수' 3.9398949655688 빨간 부분 숫자에 오차 있음. (소숫점 둘째 자리 정도까지만 반올림 해서 답안 작성) 참 값 = 3.9362834270354... 2026 02.04 1. 분모 먼저 계산 400 × 10000 = 100 × 6000 = GT 결과값 4,600,000 역수 처리 ÷÷== 결과값 0.00000021739 2. 분자 곱하기 ×3 00 00 00 ×4 00 ×1 00 00 최종 결과 = 2,608,695.65217 2026 02.04 해결 방법 1. t=-1 을 기준으로 그래프를 2개로 나누어 표현 ㄴ 근데 이것도 tstep을 맞추지 않으면 문제가 발생할 것기도 하고, 상관이 없을 것 같기도 하고... 모르겠네요. 2. t=-1 이 직접 계산되도록 tstep을 적절하게 조정 tstep=0.1 tstep=0.01 도 해 보고 싶지만, 구간 크기에 따라 최소 tstep 이 변하는지 여기서는 0.01로 설정해도 0.015로 바뀌어버립니다. 그래서 tstep=0.02 로 하는게 최대한 긴 그래프를 얻을 수 있습니다. 2026 02.02 불연속 그래프 ti-nspire는 수학자처럼 연속적인 선을 그리는 것이 아니라, 정해진 `tstep` 간격으로 점을 찍고 그 점들을 직선으로 연결하는 'connect-the-dots' 방식으로 그래프를 그립니다. 여기에 tstep 간격에 따라 특이점(분모=0)이 제외되어 문제가 나타난 것입니다. seq(−2+0.13*t,t,0,23) {−2.,−1.87,−1.74,−1.61,−1.48,−1.35,−1.22,−1.09,−0.96,−0.83,−0.7,−0.57,−0.44,−0.31,−0.18,−0.05,0.08,0.21,0.34,0.47,0.6,0.73,0.86,0.99} t=-1 에서 그래프를 찾지 않습니다. 그 좌우 값인 −1.09, −0.96 두 값의 그래프값을 찾고, Window 범위를 보고 적당히 (연속되도록) 이어서 그래프를 완성하는 방식입니다. 그래서 t=-1에서도 그래프 값이 존재하는 것입니다. 2026 02.02