- 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
삼각함수의 (각)변환 이해
1. 삼각함수의 변환이 가능한 이유
삼각함수의 (각)변환이라고 하면 θ에 일정 각도를 더하면, cos ↔ sin 이 되거나 앞에 부호가 바뀌거나 하는 것을 말하는데, 그것은 삼각함수가 일정한 패턴을 가진 주기함수이기 때문에 가능한 것이다.
이해하지 못하면 외울 수밖에 없는데, 이해하면 외울 필요는 없다. 물론 이해도 하고 외우기도 하면 더 좋다.
2. 우함수와 기함수
우함수와 기함수가 무엇인지는 검색해서 찾아보시고...
수학에서 짝함수(영어: even function)와 홀함수(영어: odd function)는 특별한 대칭 관계를 만족하는 함수들이다. 해석학에서 자주 사용하며, 특히 멱급수나 푸리에 급수에서 중요하게 사용한다. 짝함수는 우함수(偶函數)라고도 하며, 홀함수는 기함수(奇函數)라고도 한다.
- cos(-x)=cos(x) : 우함수
- sin(-x)=-sin(x) : 기함수
https://ko.wikipedia.org/wiki/%ED%99%80%ED%95%A8%EC%88%98%EC%99%80_%EC%A7%9D%ED%95%A8%EC%88%98
3. cos 의 각변환

- cos(x) 함수는 우함수

- cos(x) 보다 ½*π 만큼 빠른 함수인 cos(x+π/2) 는 현재(x=0)을 기준으로 과거(음수방향)으로 이미 지나감


- 반대로 cos(x) 보다 π/2 만큼 느린 함수인 cos(x-π/2) 는 현재(x=0)을 기준으로 아직 미래방향(양수방향)에서 도착하지 않았음
- 그런데 그것은 sin(x) 와 동일한 모양

- 현재를 기준으로 pi만큼 빠르거나 느린 함수는 모양이 같음. (1주기의 차이 발생)
위의 내용을 정리하면 삼각함수의 변환공식
| 식 | 변환 | 식 | 변환 | 식 | 변환 | |
| 보각공식 | sin(-θ) | -sinθ | cos(-θ) | cosθ | tan(-θ) | -tanθ |
| 주기공식 | sin(θ+2nπ) | sinθ | cos(θ+2nπ) | cosθ | tan(θ+nπ) | tanθ |
| 보각공식 | sin(θ+π) | -sinθ | cos(π+θ) | -cosθ | tan(θ+π) | tanθ |
| sin(-θ+π) = sin(-(θ-π)) = -sin(θ-π) |
sinθ | cos(-θ+π) | -cosθ | tan(-θ+π) | -tanθ | |
| 반각공식 | sin(θ+π/2) | cosθ | cos(θ+π/2) | -sinθ | tan(θ+π/2) | -cotθ |
| sin(-θ+π/2) | cosθ | cos(-θ+π/2) = cos(-(θ-π/2)) = cos((θ-π/2)) |
sinθ | tan(-θ+π/2) | cotθ |
댓글3
-
세상의모든계산기
예를 들어서... cos(-θ+π/2) 를 살펴보면

- cos(θ) 를 상상해보고
- cos(-θ) 를 상상해 보고, x축 뒤집으면 되죠?)
- 거기서 π/2만큼 느린 것을 그리면 cos(-(θ-π/2)) 원하는 그래프
느린 것 = 아직 오지 않은 미래 = +방향 - 그것이 ±cos(θ), ±sin(θ) 중에서 무엇과 같은가를 상상
※ 2번 3번의 순서를 바꿔도 무방. 부호/괄호 조심.
세상의모든계산기 님의 최근 댓글
V2 갱신 (nonK / K-Type 통합형) 예전에는 직접 코드작성 + AI 보조 하여 프로그램 만들었었는데, 갈수록 복잡해져서 손 놓고 있었습니다. 이번에 antigravity 설치하고, 테스트 겸 새로 V2를 올렸습니다. 직접 코드작성하는 일은 전혀 없었고, 바이브 코딩으로 전체 작성했습니다. "잘 했다 / 틀렸다 / 계산기와 다르다." "어떤 방향에서 코드 수정해 봐라." AI가 실물 계산기 각정 버튼의 작동 방식에 대한 정확한 이해는 없는 상태라서, V1을 바탕으로 여러차례 수정해야 했습니다만, 예전과 비교하면 일취월장 했고, 훨씬 쉬워졌습니다. 2026 02.04 A) 1*3*5*7*9 = 계산 945 B) √ 12번 누름 ㄴ 12회 해도 되고, 14회 해도 되는데, 횟수 기억해야 함. ㄴ 횟수가 너무 적으면 오차가 커짐 ㄴ 결과가 1에 매우 가까운 숫자라면 된 겁니다. 1.0016740522338 C) - 1 ÷ 5 + 1 = 1.0003348104468 D) × = 을 (n세트) 반복해 입력 ㄴ 여기서 n세트는, B에서 '루트버튼 누른 횟수' 3.9398949655688 빨간 부분 숫자에 오차 있음. (소숫점 둘째 자리 정도까지만 반올림 해서 답안 작성) 참 값 = 3.9362834270354... 2026 02.04 1. 분모 먼저 계산 400 × 10000 = 100 × 6000 = GT 결과값 4,600,000 역수 처리 ÷÷== 결과값 0.00000021739 2. 분자 곱하기 ×3 00 00 00 ×4 00 ×1 00 00 최종 결과 = 2,608,695.65217 2026 02.04 해결 방법 1. t=-1 을 기준으로 그래프를 2개로 나누어 표현 ㄴ 근데 이것도 tstep을 맞추지 않으면 문제가 발생할 것기도 하고, 상관이 없을 것 같기도 하고... 모르겠네요. 2. t=-1 이 직접 계산되도록 tstep을 적절하게 조정 tstep=0.1 tstep=0.01 도 해 보고 싶지만, 구간 크기에 따라 최소 tstep 이 변하는지 여기서는 0.01로 설정해도 0.015로 바뀌어버립니다. 그래서 tstep=0.02 로 하는게 최대한 긴 그래프를 얻을 수 있습니다. 2026 02.02 불연속 그래프 ti-nspire는 수학자처럼 연속적인 선을 그리는 것이 아니라, 정해진 `tstep` 간격으로 점을 찍고 그 점들을 직선으로 연결하는 'connect-the-dots' 방식으로 그래프를 그립니다. 여기에 tstep 간격에 따라 특이점(분모=0)이 제외되어 문제가 나타난 것입니다. seq(−2+0.13*t,t,0,23) {−2.,−1.87,−1.74,−1.61,−1.48,−1.35,−1.22,−1.09,−0.96,−0.83,−0.7,−0.57,−0.44,−0.31,−0.18,−0.05,0.08,0.21,0.34,0.47,0.6,0.73,0.86,0.99} t=-1 에서 그래프를 찾지 않습니다. 그 좌우 값인 −1.09, −0.96 두 값의 그래프값을 찾고, Window 범위를 보고 적당히 (연속되도록) 이어서 그래프를 완성하는 방식입니다. 그래서 t=-1에서도 그래프 값이 존재하는 것입니다. 2026 02.02