- 세상의 모든 계산기 수학, 과학, 공학 이야기 수학 ()
삼각함수의 (각)변환 이해
1. 삼각함수의 변환이 가능한 이유
삼각함수의 (각)변환이라고 하면 θ에 일정 각도를 더하면, cos ↔ sin 이 되거나 앞에 부호가 바뀌거나 하는 것을 말하는데, 그것은 삼각함수가 일정한 패턴을 가진 주기함수이기 때문에 가능한 것이다.
이해하지 못하면 외울 수밖에 없는데, 이해하면 외울 필요는 없다. 물론 이해도 하고 외우기도 하면 더 좋다.
2. 우함수와 기함수
우함수와 기함수가 무엇인지는 검색해서 찾아보시고...
수학에서 짝함수(영어: even function)와 홀함수(영어: odd function)는 특별한 대칭 관계를 만족하는 함수들이다. 해석학에서 자주 사용하며, 특히 멱급수나 푸리에 급수에서 중요하게 사용한다. 짝함수는 우함수(偶函數)라고도 하며, 홀함수는 기함수(奇函數)라고도 한다.
- cos(-x)=cos(x) : 우함수
- sin(-x)=-sin(x) : 기함수
https://ko.wikipedia.org/wiki/%ED%99%80%ED%95%A8%EC%88%98%EC%99%80_%EC%A7%9D%ED%95%A8%EC%88%98
3. cos 의 각변환

- cos(x) 함수는 우함수

- cos(x) 보다 ½*π 만큼 빠른 함수인 cos(x+π/2) 는 현재(x=0)을 기준으로 과거(음수방향)으로 이미 지나감


- 반대로 cos(x) 보다 π/2 만큼 느린 함수인 cos(x-π/2) 는 현재(x=0)을 기준으로 아직 미래방향(양수방향)에서 도착하지 않았음
- 그런데 그것은 sin(x) 와 동일한 모양

- 현재를 기준으로 pi만큼 빠르거나 느린 함수는 모양이 같음. (1주기의 차이 발생)
위의 내용을 정리하면 삼각함수의 변환공식
| 식 | 변환 | 식 | 변환 | 식 | 변환 | |
| 보각공식 | sin(-θ) | -sinθ | cos(-θ) | cosθ | tan(-θ) | -tanθ |
| 주기공식 | sin(θ+2nπ) | sinθ | cos(θ+2nπ) | cosθ | tan(θ+nπ) | tanθ |
| 보각공식 | sin(θ+π) | -sinθ | cos(π+θ) | -cosθ | tan(θ+π) | tanθ |
| sin(-θ+π) = sin(-(θ-π)) = -sin(θ-π) |
sinθ | cos(-θ+π) | -cosθ | tan(-θ+π) | -tanθ | |
| 반각공식 | sin(θ+π/2) | cosθ | cos(θ+π/2) | -sinθ | tan(θ+π/2) | -cotθ |
| sin(-θ+π/2) | cosθ | cos(-θ+π/2) = cos(-(θ-π/2)) = cos((θ-π/2)) |
sinθ | tan(-θ+π/2) | cotθ |
댓글3
-
세상의모든계산기
예를 들어서... cos(-θ+π/2) 를 살펴보면

- cos(θ) 를 상상해보고
- cos(-θ) 를 상상해 보고, x축 뒤집으면 되죠?)
- 거기서 π/2만큼 느린 것을 그리면 cos(-(θ-π/2)) 원하는 그래프
느린 것 = 아직 오지 않은 미래 = +방향 - 그것이 ±cos(θ), ±sin(θ) 중에서 무엇과 같은가를 상상
※ 2번 3번의 순서를 바꿔도 무방. 부호/괄호 조심.
세상의모든계산기 님의 최근 댓글
은행앱 통합하면서 없어졌나보네요. ㄴ 비슷한 기능 찾으시는 분은 : 스마트 금융 계산기 검색해 보세요. https://play.google.com/store/apps/details?id=com.moneta.android.monetacalculator 2026 01.25 Ctrl+Z 를 이용해 뒤로 돌아기기 Undo 기능이 있는지 살펴보세요. 2026 01.23 쌀집계산기로 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 https://allcalc.org/56739 3. 'x' 값 구하기 계산기 조작법 목표: x = Dx / D = [(c×e) - (b×f)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 1 * 1 M+ : 메모리(M)에 1를 더합니다. (현재 M = 1) -0.1 * -0.2 M- : 메모리(M)에서 0.02를 뺍니다. (현재 M = 0.98 = 0.98) 이로써 메모리(MR)에는 분모 0.98가 저장됩니다. 2단계: 분자 Dx 계산 후 나누기 78000 * 1 : 78000를 계산합니다. = : GT에 더합니다. -0.1 * 200000 : -20000를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. // sign changer 버튼 사용 GT : GT를 불러옵니다. GT는 98000 (분자 Dx) 값입니다. ÷ MR = : 위 결과(98000)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 x값 100,000를 구합니다. 4. 'y' 값 구하기 계산기 조작법 목표: y = Dy / D = [(a×f) - (c×d)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 'x'에서와 분모는 동일하고 메모리(MR)에 0.98가 저장되어 있으므로 패스합니다. 2단계: 분자 Dy 계산 후 나누기 GT ± = : GT를 불러오고 부호를 뒤집어 GT에 더합니다. GT가 0으로 리셋됩니다. 【AC】를 누르면 M은 유지되고 GT만 리셋되는 계산기도 있으니 확인해 보세요. 1 * 200000 : 200000를 계산합니다. = : GT에 더합니다. 78000 * -0.2 : -15600를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. GT : GT를 불러옵니다. 215600 (분자 Dy) 값입니다. ÷ MR = : 위 결과(215600)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 y값 220,000를 구합니다. x, y 값을 이용해 최종 결과를 구합니다. 2026 01.18 크레이머 = 크레머 = 크라메르 공식 = Cramer's Rule https://allcalc.org/8985 2026 01.18 부호 변경, Sign Changer 버튼 https://allcalc.org/52092 2026 01.18