- 세상의 모든 계산기 자유(질문) 게시판 일반 ()
손으로 세제곱근 계산하기? 도대체 왜 그러시는 건데요??
세제곱근을 손으로 풀어야 하나요?
"8의 세제곱근" 같은 것도 아니고, "1.392274 의 세제곱근"을 손으로 풀어야 한다구요?
왜죠? 도대체 왜 그러시는 건데요?

(핸드폰이나 컴퓨터에 있는) 공학용 계산기를 쓰면 되는 걸 알지만, 그걸 못쓰는 상황이라는 건데...
굳이 저런 상황이 왜 있는 건지? 모르겠지만...
여튼 일반 계산기도 없고 오직 손으로 풀어야 한다면,
그냥 못풀겠다고 하고 펜을 집어 던지시는게 좋습니다.
오차값이라도 제발 구해달라고 누가 사정사정한다면 그 때는 얘기가 좀 달라지겠지만요.
딱 떨어지지 않는 세제곱근의 근사값으로 계산하는 것은 그렇게 어렵지는 않습니다.
다음 과정만 잘 따라오시면 됩니다.
1. 정확한 해를 손으로 계산하는 것은 매우 어렵다.
- 고차방정식을 풀 때는 특히 손 계산으로는 해를 정확히 얻기 어렵다.
2. 손으로 계산할 때는 근사값으로 만족해야 한다.
- 근사 방법으로 빠르게 해를 구하고, 일정한 오차 범위를 허용하는 것이 현실적이다.
3. 이항 전개를 활용한 근사 계산
- \( (1 + r)^3 = 1^3 + 3r + 3r^2 + r^3 \)에서 \( +3r^2 +r^3 \) 는 \( r \)이 0에 가까울 때 무시할 수 있다.
- \( 3r^2 \)까지 포함하고, \( r^3 \) 만 버린다면, 오차는 줄어들겠지만, 제곱근을 손으로 또 구해야 하는 불상사가 생긴다.
- 어쩔 수 없이 2차항 3차항은 버려야만 한다.
- 따라서, \( 1 + 3r = 1.392274 \)를 풀어 간단한 근사 해 \(r = 0.130758 \)를 구해볼 수는 있다.
- 그런데, r=0.130758 이 0에 가깝다고 볼 수 있나?
4. 핵심은 \( r \)이 0에 가까워야만 이 논리에 의미가 있다는 것이다.
- \( r \)이 너무 크면 오차가 커져 근사 결과에 의미가 없어지므로, 매우 작은 \( r \)일 때 이 방법이 유효하다.
- 어떻게 r을 0에 가깝게 만들 것인가? 우리는 그 방법을 찾을 것이다. 늘 그랬듯이...
5. 이자율과 현실적 문제에서의 활용
- 이자율은 보통 5% 내외로 현실적으로 작은 값이기 때문에, 이를 바탕으로 사전 지식을 활용할 수 있다.
- \( 1.392274 \)는 \( 1.1^3 \)보다 크고 \( 1.2^3 \)보다 작다는 것을 (경험적으로) 감각적으로 알 수 있다.
- 아니면 최소한 앞선 과정3.에서 찾은 답이 r=0.130758 이니 제일 앞자리 0.1을 없애면 r이 0에 더 가까워지는 것 아니겠는가?
6. 더 정밀한 근사를 위해 수식을 변형해 사용
- \( 1.1 + r' \)을 기준으로 다시 전개하여 오차를 줄일 수 있다.
- \( (1.1 + r')^3 \approx 1.331 + 3.63r' \)로 고차항을 무시하여 전개 후, \( 1.331 + 3.63r' = 1.392274 \)을 계산하면, 훨씬 작은 오차로 근사값을 얻을 수 있다.
- 그렇게 찾은 r'=0.016879889807163 이고, 0.1 을 더해주면 더욱 더 근사해진 근사값 r = 0.116879889807163 을 얻는다.

이 방법은 계산량이 상대적으로 적고, 1차식으로 계산이 끝나기 때문에
직관적으로 \( r \) 값을 점점 더 작은 값으로 조정하면서 빠르게 근사값을 구할 수 있습니다.
더 정밀하게 다음 값을 구한다면
직전에 찾은 결과값에서 한자리 더 정확한 값을 선택해 0.12 또는 0.11을 빼고 r'' 를 계산해 볼 수 있겠습니다.





세상의모든계산기 님의 최근 댓글
Ctrl+Z 를 이용해 뒤로 돌아기기 Undo 기능이 있는지 살펴보세요. 2026 01.23 쌀집계산기로 연립방정식 계산하기 - 크래머/크레이머/크라메르 공식 적용 https://allcalc.org/56739 3. 'x' 값 구하기 계산기 조작법 목표: x = Dx / D = [(c×e) - (b×f)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 1 * 1 M+ : 메모리(M)에 1를 더합니다. (현재 M = 1) -0.1 * -0.2 M- : 메모리(M)에서 0.02를 뺍니다. (현재 M = 0.98 = 0.98) 이로써 메모리(MR)에는 분모 0.98가 저장됩니다. 2단계: 분자 Dx 계산 후 나누기 78000 * 1 : 78000를 계산합니다. = : GT에 더합니다. -0.1 * 200000 : -20000를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. // sign changer 버튼 사용 GT : GT를 불러옵니다. GT는 98000 (분자 Dx) 값입니다. ÷ MR = : 위 결과(98000)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 x값 100,000를 구합니다. 4. 'y' 값 구하기 계산기 조작법 목표: y = Dy / D = [(a×f) - (c×d)] / [(a×e) - (b×d)] 계산하기 1단계: 분모 D 계산 (메모리 활용) 'x'에서와 분모는 동일하고 메모리(MR)에 0.98가 저장되어 있으므로 패스합니다. 2단계: 분자 Dy 계산 후 나누기 GT ± = : GT를 불러오고 부호를 뒤집어 GT에 더합니다. GT가 0으로 리셋됩니다. 【AC】를 누르면 M은 유지되고 GT만 리셋되는 계산기도 있으니 확인해 보세요. 1 * 200000 : 200000를 계산합니다. = : GT에 더합니다. 78000 * -0.2 : -15600를 계산합니다. ± = : 부호를 뒤집어 GT에 넣습니다. GT : GT를 불러옵니다. 215600 (분자 Dy) 값입니다. ÷ MR = : 위 결과(215600)를 메모리(MR)에 저장된 분모 D(0.98)로 나누어 최종 y값 220,000를 구합니다. x, y 값을 이용해 최종 결과를 구합니다. 2026 01.18 크레이머 = 크레머 = 크라메르 공식 = Cramer's Rule https://allcalc.org/8985 2026 01.18 부호 변경, Sign Changer 버튼 https://allcalc.org/52092 2026 01.18 [fx-570 CW] 와의 차이 CW에 【×10x】버튼이 사라진 것은 아닌데, 버튼을 누를 때 [ES][EX] 처럼 특수기호 뭉치가 생성되는 것이 아니고, 【×】【1】【0】【xㅁ】 버튼이 차례로 눌린 효과가 발생됨. ※ 계산 우선순위 차이가 발생할 수 있으므로 주의. 괄호로 해결할 것! 2026 01.18